مواد مؤثره آرایشی-دارویی با قابلیت بازیافت از زائدات شیلاتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیمی دارویی، دانشکده داروسازی، دانشگاه علوم پزشکی ایران، تهران، ایران.

2 گروه فارماسیوتیکس، دانشکده داروسازی، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی البرز، کرج، ایران

چکیده

محصولات آرایشی که حاوی ترکیبات دریایی هستند از جذابیت ویژه‌ای برای مصرف‌کنندگان برخوردارند و به‌همین دلیل است که در یک دهه اخیر تقاضا برای این محصولات نیز افزایش یافته است. اما از طرفی، منابع طبیعی از جمله منابع دریایی، محدود هستند و نمی ­توان به‌صورت بی­ رویه از آن‌ها بهره ­برداری نمود؛ زیرا سالیان زمان می­ برد تا این منابع تجدید شوند. بنابراین، این موضوع باعث شده است تا امروزه از زائدات شیلاتی به‌عنوان منبعی پایدار برای بازیافت و استخراج موادی با ارزش بالا که در صنعت محصولات آرایشی نیز کاربرد دارند، استفاده شود. از جمله این مواد می­توان به کلاژن، کیتین، فسفات کلسیم، آستاگزانتین و فیکوبیلی‌پروتئین ­ها اشاره کرد که به‌عنوان  آنتی‌اکسیدان، ضد پیری، ضد چروک، ضد آکنه و ضد التهاب در فرمولاسیون ­های آرایشی مورد استفاده قرار می­ گیرند. درنتیجه، با توجه به اهمیت موضوع، در این مطالعه به پتانسیل زائدات شیلاتی برای بازیافت مواد مؤثره آرایشی-داروئی پرداخته شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Recoverable cosmeceutical ingredients from marine discards/by-products

نویسندگان [English]

  • Mohammad‌ Ali Daneshmehr 1
  • Faranak Salmannejad 2
1 Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
2 Department of Pharmaceutics, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran.
چکیده [English]

Cosmetic products with marine-derived ingredients instead of synthetic ingredients are indeed particularly attractive to consumers, and that is why the demand for these products has increased in the last decade. However, natural resources, including marine resources, are limited and should not be overexploited because their regeneration involves the passage of many years. One of the solutions for natural resource depletion is to recover their discards and by-products. Therefore, this issue has led to the use of marine discards and by-products produced in the fishing industry as a sustainable source for extracting high-value ingredients that are used in the cosmetic industry. These ingredients such as collagen, chitin, natural calcium phosphates, astaxanthin, and phycobiliproteins could be utilized as antioxidants, anti-photoaging, anti-wrinkle, anti-acne, and anti-inflammation in cosmetic formulations. As a result, in this study, according to the importance of the subject, the potential of marine discards and by-products to extract effective cosmeceuticals was discussed.

کلیدواژه‌ها [English]

  • Discards/by-products
  • Cosmeceuticals
  • Collagen
  • Chitin
Agarwal V., Tjandra E.S., Iyer K.S., Humfrey B., Fear M., Wood F.M., Dunlop S., Roston C.L. 2014. Evaluating the effects of nacre on human skin and scar cells in culture. Toxicology Research 3(4), 223-227.
Ahuja I., Dauksas E., Remme J.F., Richardsen R., Løes A.K. 2020. Fish and fish waste-based fertilizers in organic farming - With status in Norway: A review. Waste Management 115, 95-112.
Al-Nimry S., Dayah A.A., Hasan I., Daghmash R. 2021. Cosmetic, Biomedical and Pharmaceutical Applications of Fish Gelatin/Hydrolysates. Marine Drugs 19(3), 145.
Ambati R.R., Phang S.M., Ravi S., Aswathanarayana R.G. 2014. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications--a review. Marine Drugs 12(1), 128-152.
Aranaz I., Acosta N., Civera C., Elorza B., Mingo J., Castro C., Gandia M.D.I.L. 2018. Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives. Polymers (Basel) 10(2), 213.
Beheshti Foroutani M., Parrish C.C., Wells J., Taylor R.G., Rise M.L., Shahidi F. 2018. Minimizing marine ingredients in diets of farmed Atlantic salmon (Salmo salar): Effects on growth performance and muscle lipid and fatty acid composition. PLoS One 13(9), e0198538.
By-Product. IFFO. 2022. Available: https://www.iffo.com/product (Accessed on 12 April 2022).
Carella F., Degli Esposti L., Adamiano A., Iafisco M. 2021. The use of calcium phosphates in cosmetics, state of the art and future perspectives. Materials (Basel) 14(21), 6398.
Coppola D., Lauritano C., Palma Esposito F., Riccio G., Rizzo C., De Pascale D. 2021. Fish waste: from problem to valuable resource. Marine Drugs 19(2), 116.
Coppola D., Oliviero M., Vitale G.A., Lauritano C., D’Ambra I., Iannace S., De Pascale D. 2020. Marine collagen from alternative and sustainable sources: extraction, processing and applications. Marine Drugs 18(4), 214.
Eliaz N., Metoki N. 2017. Calcium Phosphate Bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications. Materials (Basel) 10(4), 334.
Felician F.F., Xia C., Qi W., Xu H. 2018. Collagen from marine biological sources and medical applications. Chemistry & Biodiversity 15(5), e1700557.
Ferraro V., Carvalho A.P., Piccirillo C., Santos M.M., Castro P.M., Pintado M.E. 2013. Extraction of high added value biological compounds from sardine, sardine-type fish and mackerel canning residues--a review. Materials Science & Engineering C, Materials for Biological Applications 33(6), 3111-3120.
Fonseca S., Amaral M.N., Reis C.P., Custódio L. 2023. Marine Natural Products as Innovative Cosmetic Ingredients. Marine Drugs 21(3), 170.
Huang T.H., Wang P.W., Yang S.C., Chou W.L., Fang J.Y. 2018. Cosmetic and therapeutic applications of fish oil's fatty acids on the skin. Marine Drugs 16(8), 256.
Jafari H., Lista A., Siekapen M.M., Ghaffari-Bohlouli P., Nie L., Alimoradi H., Shavandi A. 2020. Fish collagen: extraction, characterization, and applications for biomaterials engineering. Polymers (Basel) 12(10), 2230.
Jofre J., Celis-Plá P.S.M., Figueroa F.L., Navarro N.P. 2020. Seasonal variation of Mycosporine-like amino acids in three subantarctic red seaweeds. Marine Drugs 18(2), 75.
Kim S.K., Ravichandran Y.D., Khan S.B., Kim Y.T. 2008. Prospective of the cosmeceuticals derived from marine organisms. Biotechnology and Bioprocess Engineering 13, 511-523.
Latire T., Legendre F., Bigot N., Carduner L., Kellouche S., Bouyoucef M., Carreiras F., Marin F., Lebel J.M., Galera P., Serpentiti A. 2014. Shell extracts from the marine bivalve Pecten maximus regulate the synthesis of extracellular matrix in primary cultured human skin fibroblasts. PLoS One 9(6), e99931.
Lee K., Kim H., Kim J.M., Chung Y.H., Lee T.Y., Lim H.S., Lim J.H., Kim T., Bae J.S., Woo C.H., Kim K.J., Jeong D. 2012. Nacre-driven water-soluble factors promote wound healing of the deep burn porcine skin by recovering angiogenesis and fibroblast function. Molecular Biology Reports 39(3), 3211-3218.
León-López A., Morales-Peñaloza A., Martínez-Juárez V.M., Vargas-Torres A., Zeugolis D.I., Aguirre-Álvarez G. 2019. Hydrolyzed collagen-sources and applications. Molecules 24(22), 4031.
Li G.Y., Fukunaga S., Takenouchi K., Nakamura F. 2005. Comparative study of the physiological properties of collagen, gelatin and collagen hydrolysate as cosmetic materials. International Journal of Cosmetic Sciense 27(2), 101-106.
Ngo D.H., Ryu B., Kim S.K. 2014. Active peptides from skate (Okamejei kenojei) skin gelatin diminish angiotensin-I converting enzyme activity and intracellular free radical-mediated oxidation. Food Chemistry 143, 246-255.
Pangestuti R., Kim S.K. 2011. Biological activities and health benefit effects of natural pigments derived from marine algae. Journal of Functional Foods 3(4), 255-266.
Piccirillo C., Pullar R.C., Costa E., Santos-Silva A., Pintado M.M., Castro P.M. 2015. Hydroxyapatite-based materials of marine origin: a bioactivity and sintering study. Materials Science & Engineering C, Materials for Biological Applications 51, 309-315.
Ryu B., Qian Z.J., Kim M.M., Nam K.W., Kim S.K. 2009. Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract. Radiation Physics and Chemistry 78(2), 98-105.
Sadhukhan J., Gadkari S., Martinez-Hernandez E., Ng K.S., Shemfe M., Torres-Garcia E., Lynch J. 2019. Novel macroalgae (seaweed) biorefinery systems for integrated chemical, protein, salt, nutrient and mineral extractions and environmental protection by green synthesis and life cycle sustainability assessments. Green Chemistry 21(10), 2635-2655.
Siahaan E.A., Agusman, Pangestuti R., Shin K.H., Kim S.K. 2022. Potential cosmetic active ingredients derived from marine by-products. Marine Drugs 20(12), 734.
Šimat V., Rathod N.B., Čagalj M., Hamed I., Generalić Mekinić I. 2022. Astaxanthin from crustaceans and their byproducts: a bioactive metabolite candidate for therapeutic application. Marine Drugs 20(3), 206.
Sionkowska A., Adamiak K., Musiał K., Gadomska M. 2020. Collagen Based materials in cosmetic applications: a review. Materials (Basel) 13(19), 4217.
Sionkowska A., Skrzyński S., Śmiechowski K., Kołodziejczak A. 2017. The review of versatile application of collagen. Polymers for Advanced Technologies 28(1), 4-9.
Suganya T., Varman M., Masjuki H.H., Renganathan S. 2016. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renewable and Sustainable Energy Reviews 55, 909-941.
Tabassum N., Ahmed S., Ali M.A. 2021. Chitooligosaccharides and their structural-functional effect on hydrogels: A review. Carbohydrate Polymers 261, 117882.
Takashi H. 2021. Cosmetic potential of boiled water of Hijiki (Sargassum fusiforme) grown in the ocean in Okinawa, Japan.
Vega J., Schneider G., Moreira B.R., Herrera C., Bonomi-Barufi J., Figueroa F.L. 2021. Mycosporine-like amino acids from red macroalgae: uv-photoprotectors with potential cosmeceutical applications. Applied Sciences 11(11), 5112.
Yan N., Chen X. 2015. Sustainability: don't waste seafood waste. Nature 524(7564), 155-157.
Yoon G.L., Kim B.T., Kim B.O., Han S.H. 2003. Chemical-mechanical characteristics of crushed oyster-shell. Waste Management 23(9), 825-834.
Younes I., Rinaudo M. 2015. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs 13(3), 1133-1174.