‌اثرات توسعه مزارع کوچک مقیاس پرورش ماهیان خاویاری بر کیفیت پساب منطقه (مطالعه موردی: مزارع پرورش ماهیان خاویاری در شهرستان آستارا و تالش)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه منابع طبیعی و محیط زیست، واﺣﺪ ﻋﻠﻮم و ﺗﺤﻘﯿﻘﺎت، داﻧﺸﮕﺎه آزاد اﺳﻼﻣﯽ، تهران، اﯾﺮان.

2 گروه شیلات، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران.

3 سازمان حفاظت محیط زیست ایران، تهران، ایران.

چکیده

این مطالعه در مزارع پرورش ماهیان خاویاری در حاشیه سواحل دریای‌خزر در استان گیلان انجام گرفت.  هدف بررسی کیفیت آب ورودی و پساب خروجی تعداد 6 مزرعه بود. نمونه‌برداری از فروردین تاآذر ماه سال 1398 انجام شد. پارامتر کدورت به‌وسیله دستگاه کدورت‌سنج، کل موادجامد محلول به‌وسیله TDS متر، ارتو فسفات و فسفات کل به‌وسیله روش اسکوربیک اسیدآنتی مونیل تارتارات، آمونیم به‌وسیله تقطیر اولیه نسلریزاسیون، نیترات با روش احیاکادمیوم، اکسیژن محلول با روش وینکلر، باکتری‌های کلیفرم به‌وسیله MPN، روغن وچربی به روش وزن‌سنجی و دیگر پارامترها با روش‌های استاندارد اندازه‌گیری شدند. در تمامی مراکز تفاوت معنی‌داری در میانگین پارامترها مشاهده شد. میانگین فسفات مزارع 0/05± 0/17میلی‌گرم بر لیتر محاسبه شد که از استاندارد سازمان بهداشت جهانی به مراتب بالاتر بود همچنین میانگین کدورت پساب مزارع (1/60± 29/69 Ntu) نیز مقداری به مراتب بیشتر از حد استانداردهای EPA و WHO را نشان داد. همچنین با توجه به نتایج به‌دست آمده میانگین کل جامدات محلول در آب مقادیری به مراتب بیشتر از حد استاندارد سازمان بهداشت جهانی را با میانگین87/70±4466/07 (میلی‌گرم بر لیتر) نشان داد. از دیگر پارامترهای مورد توجه در بررسی حاضر میانگین تعداد باکتری‌های کلی‌فرم در پساب بود که مقادیر بالایی را نسبت به استاندارد نشان دادند. بر اساس نتایج، تصفیه پساب قبل از انتشار آن به محیط‌های آبی توصیه می‌شود که علاوه بر کاهش انتقال الودگی میکروبی، به حداقل رساندن خطر یوتریفیکاسیون و کاهش اثرات بر سلامت موجودات آبزی را ناشی می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of small-scale sturgeon farming development on effluent quality (Case study: Sturgeon farms in Astara and Talesh)

نویسندگان [English]

  • Habeeb Hoseinpour Roudsari 1
  • Seyed Masoud Monavari 1
  • Hossein Khara 2
  • Behrouz Behrouzi-Rad 3
1 Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 Department of Fisheries, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
3 Department of Environment, Tehran, Iran.
چکیده [English]

This study was conducted in sturgeon farms along the Caspian Sea coast in Gilan province. The aim was to evaluate the quality of incoming water and effluent of 6 farms. Sampling was performed from April to December 2017. Turbidity parameter by turbidimeter, total soluble solids by TDS meter, orthophosphate and total phosphate by Ascorbic acid method of antimonyl tartrate, ammonium by initial generation distillation, nitrate by cadmium reduction method, dissolved oxygen with Winkler method, coliform bacteria were measured by MPN, oil and fat by gravimetric method and other parameters were measured by standard methods. There was a significant difference in the mean of the parameters in all centers. The average field phosphate was measured 0.17±0.05 mg / l, which was much higher than the WHO standard. Also, the average field effluent turbidity (29.69±1.60 Ntu) was slightly higher than the EPA standards WHO showed. Also, according to the obtained results, the average of total water-soluble solids showed values much higher than the standard of the World Health Organization with an average of 4466.07± 87.70 (mg/l). Another parameter considered in the present study was the average number of coliform bacteria in the effluent, which showed high values compared to the standard. Based on these results, treatment of effluent before its release into aquatic environments is recommended, which in addition to reducing the transmission of microbial contamination, minimizes the risk of atrophy and reduces the effects on the health of aquatic organisms.

کلیدواژه‌ها [English]

  • Fish farms
  • sturgeon
  • water quality
  • Caspian Sea coast
Bhari B., Visvanathan C. 2018. Sustainable Aquaculture: Socio-Economic and ‎Environmental Assessment. In Sustainable Aquaculture (pp. 63-93). Springer. ‎
Boyd C.E. 2003. Guidelines for aquaculture effluent management at the farm-level, Aquaculture 226(1-4), 101-112.
Crab R., Avnimelech Y., Defoirdt T., Bossier P., Verstraete W. 2007. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture 270, 1-14.
de Mitcheson Y., Linardich C., Barreiros J.P., Ralph G.M., Aguilar-Perera A., Afonso P., Erisman B.E., Pollard D.A., Fennessy S.T., Bertoncini A. 2020. Valuable but vulnerable: Over-fishing and under-management continue to threaten groupers so what now?. Marine Policy 116, 10390
Downing K.M., Merkens J.C. 1955. The infuence of dissolved- oxygen concentration on the toxicity of un-ionized ammonia to Rainbow trout (Salmo gairdnerii richardson). Annals of Applied Biology 43(2), 243-246.
Enell M., Lof, J. 1983. Environmental impact of aquaculture- sedimentation and nutrient loadingsfrom fish cage culture. Vatten 39.
EPA. 1996. Quality Criteria for Waters, Washington D. C. Landsape to Riverscapes: bridging the gap between research and conversation of stream fishes, Biosciences 52, 483-498.
Esmaili Sari A. 2000. Principles of water quality management in aquaculture. Naghshe Mehr Press, Tehran. 221 p.
FAO. 2012. The State of world fisheries and aquaculture. FAO, Rome. www.fao.org
Foubert A., Lecomte F., Brodeur P., Le Pichon C., Mingelbier M. 2020, How intensive agricultural practices and flow regulation are threatening fish spawning habitats and their connectivity in the St. Lawrence River floodplain, Canada. 1-19.
Fotedar R. 2016. Water quality, growth and stress responses of juvenile barramundi (Lates calcarifer Bloch), reared at four different densities in integrated recirculation aquaculture systems. Aquaculture 458, 113-120.
Hatibhaghighi S., Ghane A., Nahrovar M.R. 2008. Evaluation of colifurms in the river Shafaroud West provience. Iranian Journal of Fisheries 2(1): 1-11.
Kirkajaic M.U., Pulatsu S., Topcu A. 2009. Trout farm effluent effects on water sediment quality and benthos. Clean Soil Air Water 37, 386-391.
Leslie H., Brandsma S., Van Velzen M., Vethaak, A. 2017. Microplastics en route: ‎Field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment ‎plants, North Sea sediments and biota. Environment International 101, 133-142. ‎
Lulijwa R., Rupia E.J., Alfaro A. 2020. Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Reviews in Aquaculture 12(2), 640-663.
Merino G.E., Piedrahita R.H., Conklin D.E. 2007. Ammonia and urea excretion rates of California halibut (Paralichthys californicus, Ayres) under farm-like conditions. Aquaculture 271, 227-243.
Maillard V.M., Boardman G.D., Nyland J.E., Kuhn D.D. 2005. Water quality and sludge characterization at raceway-system trout farms. Aquacultural Enginering 33, 271-284.
Mantzavrakos E., Kornaros M., Lyberatos G., P. Kaspiris P. 2007. Impacts of a marine ‎fish ‎farm in Argolikos Gulf (Greece) on the water column and the sediment. Desalination ‎‎210, 110-‎‎124.‎
Naderijlodar M., EsmailiSari A., Ahmadi M.R., SeifAbadi C.J., Abdoli A. 2006. Pollution of rainbow       trout fish shop on the Haraz river water quality parameters. Journal of Environmental Sciences 3, 21-26.
Nour, H.E., El‑Sorogy, A.S.J.E.E.S. 2020. Heavy metals contamination in seawater, ‎sediments and ‎seashells of the Gulf of Suez, Egypt. Environmental Earth Sciences 79, 274. ‎
Prasad R., Prasad S. 2019. Algal Blooms and Phosphate ‎Eutrophication of Inland Water Ecosystems with Special Reference to India. Environmrnt 5(01), 01-08. ‎
Pulatsu S., Rad F., Köksal G., Aydýn F., Karasu Benli A.Ç., Topçu A. 2004. The impact of rainbow trout farm effluents on water quality of Karasu stream, Turkey. Turkish Journal of Fisheries and Aquatic Sciences 4, 9-15.
Rahimibashar M.R., Alipoor V., Issazade K. 2012. Environment effects of fish culture pond on   chemical factors and water quality in the Shenrod River (North of Iran). Iranian Journal of Fisheries 8, 358-363.
Rosenthal H. 1997. Environmental issues and the interaction of aquaculture with other competing   resource users. Aquaculture Association Journal 2, 1-13.
Samani A.V., Karbassi A., Fakhraee M., Heidari M., Vaezi A., Valikhani Z.J.D., ‎Treatment W. 2015. Effect of dissolved organic carbon and salinity on flocculation ‎process of heavy metals during mixing of the Navrud River water with Caspian Seawater. Desalination and Water Treatment ‎‎55(4), 926-934. ‎
Schulz C., Gelbrecht J., Rennert B. 2003. Treatment of rainbow trout farm effluents in constructed wetland with emergent plants and subsurface horizontal water flow. Aquaculture 21: 207-217.
Smith M.D., Roheim C.A., Crowder L.B. 2010. Sustainability and global seafood. Science 327(5967), 784-786.
Serra-Llinares R.M., Bjørn P.A., Finstad B., Nilsen, R., Harbitz, A., Berg, M., Asplin, L.J.A.E. I. 2014. Salmon lice infection on wild salmonids in marine protected areas: an evaluation of the Norwegian'National Salmon Fjords. Aquaculture Environment Interactions 5(1), 1-16.
Solberg M.F., Skaala Ø., Nilsen F., Glover, K.A.J.P.O. 2013. Does domestication cause ‎changes in growth reaction norms a study of farmed, wild and hybrid Atlantic salmon ‎families exposed to environmental stress. PloS one 8(1), e54469. ‎
Tovar, A., Moreno, C., Manuel-Vez, M. P., Garcia-Vargas, M. 2000. Environmental impacts of intensive aquaculture in marine waters. Water Research 34, 334-342.
WHO. 2004. World Health Organization Guidelines for Drinking-Water Quality3th Edition Word Health   Organization (WHO) Geneva, pp. 49-64.
Van Heets P., Burkhart R., Curry W. 2009. Effect of Turbidity on Dissolved Oxygen in the Lake Macatawa Watershed, Hope College GES 401 Research Project.
Voltolina D., Gmez-Villa H., Correa G. 2004. Biomass production and nutrient removal in semi continuous cultures of Scenedesmus sp. (Chlorophyceae) in artificial wastewater, under a simulated day-night cycle. Vie Milieu 54, 21-25.
Zarzuela I., Halaihel N., Balcázar J.L., Ortega C., Vendrell D., Pérez T., Alonso J.L., de Blas I. 2009. Effect of fish farming on the water quality of rivers in northeast Spain. Water Science & Technology 60(3), 663-71.