بررسی اثر شوری بر تولید جلبک Dunaliella salina و تعیین میزان کاروتنوئید کل استخراج شده از آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیلات، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران.

2 گروه بیوتکنولوژی، دانشکده علوم زیستی، دانشگاه الزهرا، تهران، ایران.

چکیده

ریزجلبک‌ها یکی از مطمئن‌ترین منابع تولید پروتئین در جهان می‌باشند که دارای طیف گسترده‏ای از ترکیبات مفید بوده، که از این میان می‎توان به پروتئین، چربی و رنگدانه‎ها اشاره کرد. این تحقیق با هدف پرورش جلبک Dunaliella salina در محیط کشت‏ های (DUM)Modified Johansson  و (f/2) Guillard  تحت استرس شوری 10،20،30 درصد، جهت مطالعه کارایی محیط‏ های کشت و اثر استرس شوری روی کلروفیل‏ های a و b و کاروتنوئید کل مورد بررسی قرار گرفت. نتایج نشان داد که بیشترین میزان تولید کلروفیل ‏های a و b به ترتیب 0/008± 8/20 و 0/06± 3/85 میکروگرم برمیلی‌گرم است که توسط نمونه پرورش یافته با محیط کشت DUM در شوری 10% تولید شد. همچنین، بیشترین میزان کاروتنوئید کل 0/03 ± 1/97 میکروگرم برمیلی‌گرم به دست آمد که توسط نمونه پرورش یافته در محیط کشت f/2 و با غلظت شوری 30% تحت استرس تولید شد. بیشترین رشد سلولی نیز 52041/6 ± 7808333 سلول در میلی‌لیتر، در شوری 10% در محیط کشت گیلارد بود. نتایج این پژوهش نشان داد که جلبک Dunaliella salina وقتی تحت استرس شوری قرار گیرد منبع خوبی برای تولید کاروتنوئیدها خواهد بود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the effect of salinity on Dunaliella salina production and determination of total carotenoid extracted from it

نویسندگان [English]

  • Mahsa Salehi 1
  • Mohammad Ali Nematollahi 1
  • Mostafa Noroozi 2
  • Roozbeh Bozorgi 1
1 Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
2 Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
چکیده [English]

Microalgae are one of the safest sources of protein production in the world that have good sources of a wide range of beneficial compounds, including proteins, fats and pigments. This research aims to use the cultivation of Dunaliella salina in Modified Johansson (DUM) and Guillard (f/2) media under salinity stress of 10, 20, 30%, culture media efficiency and the effect of salinity stress on Chlorophylls a and b as well as total carotenoids should be investigated. The results showed that the highest production of Chlorophylls a and b are 8.20±0.008 and 3.85±0.06 μg/mg, respectively, which is produced by the sample grown with DUM medium at 10% salinity. Also, the highest amount of carotenoids was 1.79±0.30 μg/mg which was produced by the sample grown in culture medium f/2 with a salinity concentration of 30% under stress. The highest cell growth was 7808333±52041/6 cells/ml at 10% salinity in Gillard culture medium. The results of this study showed that Dunaliella salina algae is a good source of carotenoids when exposed to salinity stress.

کلیدواژه‌ها [English]

  • Culture medium f/2 and DUM
  • Salinity
  • Chlorophyll a and b
  • Total carotenoids
Abd El-Baky H.H. Moawd A., El-Behairy A.N. and El-Baroty G.S. 2002. Chemoprevention of enzo[a]pyrene-induced carcinogen and lipid peroxidation in mice by lipophilic algae extracts (phycotene). Journal of Medical Sciences 2, 185-193.
Aguirre A.M., Bassi A., Saxena P. 2013. Engineering challenges in biodiesel production from microalgae. Critical Reviews in Biotechnology 33(3), 293-308.‏
Arun N., Singh D.P. 2013. Differential response of Dunaliella salina and Dunaliella tertiolecta isolated from brines of Sambhar Salt Lake of Rajasthan (India) to salinities: a study on growth, pigment and glycerol synthesis. Journal of the Marine Biological Association of India 55(1), 65-70.
Ben-Amotz A., Shaish A., Avron M. 1989. Mode of action of the massively accumulated β-carotene of Dunaliella bardawil in protecting the alga against damage by excess irradiation. Plant Physiology 91(3), 1040-1043.
Bhalamurugan G.L., Valerie O., Mark L. 2018. Valuable bioproducts obtained from
microalgal biomass and their commercial applications: a review. Environmental Engineering Research 23, 229-241.
Borowitzka M.A., Borowitzka L.J., Kessly D. 1990. Effects of salinity increase on carotenoid accumulation in the green alga Dunaliella salina. Journal of applied Phycology 2(2), 111-119.
Borowitzka M.A., Larkum A.W.D. 1987. Calcification in algae: mechanisms and the role of metabolism. Critical Reviews in Plant Sciences 6(1), 1-45.
Brown M.R. 2002. Nutritional Value of Microalgae for Aquculture. In: Cruz-Suárez, L. E., Ricque-Marie D., Tapia-Salazar M., Gaxiola-Cortés M.G., Simoes N. (Eds.). Avances en Nutrición Acuícola VI. Memorias del VI Simposium Internacional de Nutrición Acuícola. 3 al 6 de Septiembre del 2002. Cancún, Quintana Roo, México.
Chen H., Jiang J.G. 2009. Osmotic responses of Dunaliella to the changes of salinity. Journal of Cellular Physiology 219(2), 251-258.‏
Chen Y.C. 2003. Immobilized Isochrysis galbana (Haptophyta) for long-term storage and applications for feed and water quality control in clam (Meretrix lusoria) cultures. Journal of Applied Phycology 15(5), 439-444.
De Jesus S.S., Maciel Filho R. 2010. Modeling growth of microalgae Dunaliella salina under different nutritional conditions. American Journal of Biochemistry and Biotechnology 6, 279-283.
Dhanam D.S., Dhandayuthapani K. 2013. Original Research Article Optimization of-Carotene production by Marine Microalga-Dunaliella salina. International Journal of Current Microbiology and Applied Sciences 2(3), 37-43.
Dolatyari A., Eyvazzadeh O. 2020. Evaluation of culture conditions of Donalilla salina on its antioxidant content. Nurse and Physician within War 8(29), 54-65.‏
Eimhjellen K.E., Jensen S.L. 1964. The biosynthesis of carotenoids in Rhodopseudomonas gelatinosa. Biochimica et Biophysica Acta (BBA)-General Subjects 82(1), 21-40.
EL-Baz F.K., Aboul-Enein M.A., El-Baroty G.S., Youssef A.M., Abd El-baky H.H. 2002. Accumulation of antioxidant vitamins in Dunaliella salina 2, 220-232.
FAO. 2007. Manual on the production and use of Live Food for Aquaculture. Newyork, UN. 2007.
Guedes C.A., Malcata F.X. 2011. Bioreactors: Design, Properties and Applications, In: Antolli P.G., Liu Z. (Eds.), Bioreactors: Design, Properties and Applications, Nova Science Publishers. 1-51.
Jennings T.A. 1999. Lyophilization: introduction and basic principles. CrC Press.
Macías-Sánchez M.D., Mantell C., Rodriguez M.D.L., de la Ossa E.M., Lubián L.M., Montero O. 2009. Comparison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlorophyll a from Dunaliella salina. Talanta 77(3), 948-952.
Oren A. 2005. A hundred years of Dunaliella research: 1905-2005. Saline Systems 1(1): 2.
Priyadarshani I., Rath B. 2012. Commercial and industrial applications of micro algae–A review. Journal of Algal Biomass Utilization 3(4), 89-100.
Pulz O. 2001. Photobioreactors: production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology 57(3), 287-293.
Rad F.A., Aksoz N., Hejazi M.A. 2011. Effect of salinity on cell growth and β-carotene production in Dunaliella sp. isolates from Urmia Lake in northwest of Iran. African Journal of Biotechnology 10(12), 2282-2289.
Raja R., Anbazhagan C., Ganesan V., Rengasamy R. 2004. Efficacy of Dunaliella salina (Volvocales, Chlorophyta) in salt refinery effluent treatment. Asian Journal of Chemistry 16(2), 1081.
Raja R., Hemaiswarya S., Rengasamy R. 2007. Exploitation of Dunaliella for β-carotene production. Applied Microbiology and Biotechnology 74, 517-523.
Reshma R., Devi K.C., Kumar S.D., Santhanam P., Perumal P., Krishnaveni N.,  Kim M. K. 2021. Enhancement of pigments production in the green microalga Dunaliella salina (PSBDU05) under optimized culture condition. Bioresource Technology Reports 14, 100672.
Richmond A. 2004. Biological principles of mass cultivation. In: Richmond A (ed) Microalgal culture: Biotechnology and Applied Phycology. Blackwell Science, Oxford, pp: 125-177.
Sumanta N., Haque C.I., Nishika J., Suprakash R. 2014. Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Research Journal of Chemical Sciences. 2231.
Talebi A.F., Mohtashami S.K., Tabatabaei M., Tohidfar M., Bagheri A., Zeinalabedini M., Mirzaei H.H., Mirzajanzadeh M., Shafaroudi S.M., Bakhtiari S. 2013. Fatty acids profiling: a selective criterion for screening microalgae strains for biodiesel production. Algal Research 2(3), 258-267.
Tran D., Doan N., Louime C., Giordano M., Portilla S. 2014. Growth, antioxidant capacity and total carotene of Dunaliella salina DCCBC15 in a low cost enriched natural seawater medium. World Journal of Microbiology and Biotechnology 30(1), 317-322.
Wu Z., Akter R., Arirob W., Juntawong N., Ma, C. and Duangmanee, P. 2015. Effects of light intensity and the remaining nitrate concentration on the beta-carotene accumulation of a wild Dunaliella salina strain isolated from the saline soil. Microbiology Research 6(1).