تأثیر شدت نور و محیط کشت بر روند رشد، تولید زی‌توده و محتوای رنگدانه‌های ریز جلبک Cyanothece sp.

نوع مقاله : مقاله پژوهشی

نویسندگان

مرکز تحقیقات شیلات آب‌های دور، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، چابهار، ایران.

چکیده

ریزجلبک‌های ساکن در شورزارها و تالاب‌های فوق شور از غنی‌ترین و با ارزش‌ترین منابع زیستی به‌شمار می‌آیند. این مطالعه با هدف تعیین شدت نور مورد نیاز و محیط کشت مناسب برای رشد و تولید زی‌توده و رنگدانه‌های ارزشمند اقتصادی در ریزجلبک نمک‌دوست Cyanothece sp.  طراحی شد. در این آزمایش توان رشد و تولید زی‌توده و محتویات رنگدانه‌های ریزجلبک Cyanothece sp.  در سه سطح شدت نور مختلف (3000، 5000 و 8000 لوکس) و سه محیط کشت استاندارد (BBM ،F/2 و BG11) مورد بررسی قرار گرفت. نتایج نشان داد که افزایش شدت نور از 3000 تا 5000 لوکس روند رشد و تولید زی‌توده را در هر سه محیط کشت (BBM ،F/2 و BG11) مورد بررسی به‌طور معنی‌داری افزایش داده است. شدت نور و محیط کشت به‌تنهایی و به‌صورت متقابل بر تولید رنگدانه‌های کلروفیل a، کارتنوئید کل، بتاکاروتن، فیکوسیانین و فیکواریترین تأثیر معنی‌دار نشان دادند. بالاترین محتوای رنگدانه کلروفیل a در محیط کشت BG11 در دو شدت نور 5000 و 8000 لوکس برآورد شد. در حالی‌که کارتنوئید کل و بتاکاروتن در شدت نور 8000 لوکس و محیط کشت F/2 به بالاترین میزان خود رسید. میزان فیکوسیانین و فیکواریترین در محیط کشت BG11 و BBM بالاتر از F/2 و در شدت نور 5000 و 8000 بالاتر از 3000 لوکس مشاهده شد. براساس نتایج حاصل، شدت نور 5000 لوکس و محیط کشت BG11 برای پرورشCyanothece sp.  توصیه می‌گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of light intensity and medium culture on the growth rate, biomass production and pigments component of microalgae Cyanothece sp.

نویسندگان [English]

  • Zahra Aminikhoei
  • Elnaz Erfanifar
  • Ashkan َAjdari
Offshore Water Research Center (OWRC), Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Chabahar, Iran.
چکیده [English]

Microalgae living in salt marshes and hypersaline lagoons are among the richest and most valuable biological resources. This study aims to determine the required light intensity and the suitable culture medium for the growth and production of economically valuable pigments in hypersaline microalgae Cyanothece sp. In this experiment, the ability to grow, biomass production and the pigments contents of microalgae Cyanothece sp in three different light intensity levels (3000, 5000 and 8000 lux) and three standard culture environments (BBM, F/2 and BG11) were investigated. The results of this research showed that increasing the light intensity from 3000 to 5000 lux in three medium BBM, F/2 and BG11 have significantly increased the growth and biomass production. Light intensity and culture medium alone and also mutually showed a significant effect on the production of chlorophyll a pigments, total carotenoid, beta-carotene, phycocyanin and phycoerythrin. The highest content of chlorophyll a pigment was obtained in BG11 medium at two light intensities of 5000 and 8000 lux. While the total carotenoids and beta-carotene reached their highest levels in the light intensity of 8000 lux and F/2 medium. The amount of phycocyanin and phycoerythrin observed in BG11 and BBM culture medium were higher than F/2 and in light intensity of 5000 and 8000 higher than 3000 lux. Based on the results, the light intensity of 5000 lux and culture medium BG11 are recommended for growing Cyanothece sp.

کلیدواژه‌ها [English]

  • Microalgae
  • Cyanothece sp
  • Hhypersaline
  • Light intensity
  • Culture medium
امینی خوئی ز.، عرفانی‌فر ا.، اژدری ا.، ابیر س. 1400. بررسی اثرات شوری‌‌‌های مختلف بر میزان رنگدانه‌‌‌های ارزشمند ریزجلبک نمکدوستCyanothece sp.  شناسایی شده از کشندان پشت سدی لیپار (چابهار) در شرایط آزمایشگاهی. مجله علمی شیلات ایران. 30(5): 133-121.
امینی خوئی ز.، نادری سامانی م.، طاهرپناه س.، رحیمی قره میرشاملو ق. 1401. جداسازی، خالص‌سازی و شناسایی ریختی و مولکولی دو گونه ریزجلبک نمک‌دوست از کشندان پشت سدی لیپار (سواحل دریای عمان، چابهار). مجله علوم آبزی پروری. 10(1)، 55-45.
Amini Khoeyi Z., Seyfabadi J., Ramezanpour Z. 2012. Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquaculture International 20(1), 41-49.
Andersen R.A., Kawachi M. 2005. Algal culturing techniques. Elsevier/Academic Press, New York. pp. 205-218.
Azachi M., Sadka A., Fisher M., Goldshlag P., Gokhman I., Zamir A. 2002. Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina. Plant Physiology 129: 1320-1329.
Ben-Amotz A. 2004. Industrial production of microalgal cell-mass and secondary products major industrial species: Dunaliella. In: Richmond A (ed) Microalgal culture: biotechnology and applied phycology. Blackwell Science Oxford pp. 273-280
De Philippis R., Margheri M.C., Pelosi, E., Ventura S. 1993. Exopolysaccharide production by a unicellular cyanobacterium isolated from a hypersaline habitat. Journal of Applied Phycology 5(4), 387-394.
Feng X., Bandyopadhyay A., Berla B., Page, L., Wu, B., Pakrasi H.B., Tang Y.J. 2010. Mixotrophic and photoheterotrophic metabolism in Cyanothece sp. ATCC 51142 under continuous light. Microbiology 156(8), 2566-2574.
Hejazi M.A., De Lamarliere C., Rocha J.M.S., Vermue M., Tramper J., Wijffels R.H. 2002. Selective extraction of carotenoids from the microalga Dunaliella salina with retention of viability. Biotechnology and Bioengineering 79(1), 29-36.
Hotos G.N., Antoniadis T.I. 2022. The Effect of Colored and White Light on Growth and Phycobiliproteins, Chlorophyll and Carotenoids Content of the Marine Cyanobacteria Phormidium sp. and Cyanothece sp. in Batch Cultures. Life 12(6), p.837.
Khatoon H., Haris H., Rahman N.A., Zakaria M.N., Begum H., Mian, S. 2018. Growth, proximate composition and pigment production of Tetraselmis chuii cultured with aquaculture wastewater. Journal of Ocean University of China 17 (3), 641-646.
Markets and Markets. Carotenoid Market: By Type (Astaxanthin, Beta-Carotene, Canthaxanthin, Lutein, Lycopene, and Zeaxanthin), Source (Synthetic and Natural), Application (Supplements, Food, Feed, and Cosmetics), and by Region-Global Trends and Forecast to 2021. 2015, pp. 1–172. Available online: https://www.marketsandmarkets.com/Market-Reports/carotenoid-market-158421566.html (Accessed on 30 June 2019).
Matos Â.P., 2017. The impact of microalgae in food science and technology. Journal of the American Oil Chemists' Society 94(11), 1333-1350.
Nagata M., Yamashita I. 1992. Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaish 39(10), 925–928.
Ohki, K., Le, N.Q.T., Yoshikawa, S., Kanesaki, Y., Okajima, M., Kaneko, T. and Thi, T.H., 2014. Exopolysaccharide production by a unicellular freshwater cyanobacterium Cyanothece sp. isolated from a rice field in Vietnam. Journal of Applied Phycology 26(1), 265-272.
Polle J.E., Kanakagiri S., Jin E., Masuda, T., Melis, A. 2002. Truncated chlorophyll antenna size of the photosystems—a practical method to improve microalgal productivity and hydrogen production in mass culture. International Journal of Hydrogen Energy 27(11-12), 1257-1264.
Seyfabadi J., Ramezanpour Z., Amini Khoeyi Z. 2011. Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. Journal of Applied Phycology 23(4), 721-726.
Sing S.F., Isdepsky A., Borowitzka M.A., Lewis, D.M. 2014. Pilot-scale continuous recycling of growth medium for the mass culture of a halotolerant Tetraselmis sp. in raceway ponds under increasing salinity: a novel protocol for commercial microalgal biomass production. Bioresource Technology 161, 47-54.
Yang, C.M., Chang, K.W., Yin, M.H. and Huang, H.M., 1998. Methods for the determination of the chlorophylls and their derivatives. Taiwania 43(2), 116-122.