بررسی شاخص‌های رشد و فاکتورهای خونی بچه ماهی قرمز (Carassius auratus) پس از افزودن اسید آلی پتاسیم سوربات و پروبیوتیک لاکتوباسیلوس پلانتاروم (Lactobacillus plantarum) به جیره غذایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 موسسه تحقیقات علوم دامی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

2 گروه بوم‌شناسی، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گلستان. گرگان، ایران.

3 پژوهشکده اکولوژی خلیج فارس و دریای عمان، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی. بندرعباس، ایران.

4 ایستگاه تحقیقات نرمتنان خلیج فارس، پژوهشکده اکولوژی خلیج فارس و دریای عمان، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، بندرلنگه، ایران.

چکیده

به‌منظور بررسی اثرات اسید آلی پتاسیم سوربات و پروبیوتیک L. plantarum در بچه ماهی قرمز (Carassius auratus) با وزن اولیه 0/1±5/11 گرم، آزمایشی به مدت 60 روز با بکارگیری شش تیمار شامل: جیره تجاری (تیمار شاهد)، جیره حاوی  CFU/g107 پروبیوتیک L. plantarum (تیمار 1)، جیره حاوی 0/5 درصد پتاسیم سوربات (تیمار 2)، جیره حاوی 1 درصد پتاسیم سوربات (تیمار 3)، جیره حاوی ترکیب 0/5 درصد پتاسیم سوربات و CFU/g 107 پروبیوتیک L. plantarum (تیمار 4) و جیره حاوی ترکیب 1 درصد پتاسیم سوربات و CFU/g 107 پروبیوتیک L. plantarum (تیمار 5) و هر تیمار با 3 تکرار صورت گرفت. نتایج به‌دست آمده نشان داد که بیشترین وزن نهایی، افزایش وزن، نرخ رشد ویژه و شاخص وضعیت در تیمار 5 (ترکیب 1 درصد پتاسیم سوربات و CFU/g 107 پروبیوتیک L. plantarum) مشاهده شد که اختلاف آن با سایر تیمارها معنی‌دار بود (0.05>P). کمترین ضریب تبدیل غذایی در تیمار 4 و 5 و بیشترین ضریب تبدیل غذایی در تیمار شاهد مشاهده گردید (0/05>P). همچنین نتایج نشان داد، تعداد گلبول سفید در تیمار 5 به‌طور نسبی نسبت به سایر تیمارها بالاتر بود (05/0>P)؛ در حالی که اختلاف معنی‌داری در سایر شاخص­های خونی بین تیمارهای مورد بررسی مشاهده نشد (0/05<P). در مجموع با توجه به نتایج به‌دست آمده از آزمایش، افزودن ترکیب 1 درصد پتاسیم سوربات و CFU/g 107 پروبیوتیک L. plantarum به جیره غذایی ماهی قرمز توصیه می ­شود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the growth performance and hematological parameters of goldfish fry (Carassius auratus) after inclusion of potassium sorbate organic acid and Lactobacillus plantarum probiotic to the diet

نویسندگان [English]

  • Reza Nahavandi 1
  • Mohadeseh Ahmadi 2
  • Ebrahim Masoudi 2
  • Saeid Tamadoni Jahromi 3
  • Behzad Sarvi 4
  • Sajjad Pourmozaffar 4
1 Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
2 Department of Ecology, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
3 Persian Gulf Mollusks Research Station, Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar-e- Lengeh, Iran.
4 Persian Gulf Mollusks Research Station, Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar-e- Lengeh, Iran.
چکیده [English]

A 60-day experiment was carried out to examine the effects of sorbate potassium organic acid and L. plantarum probiotic on goldfish (Carassius auratus) with a starting weight of 5.11±0.10g. One control and five treatments were designed, including commercial feed (control), L. plantarum probiotic 107CFU/g (T1), sorbate potassium 0.5% (T2), sorbate potassium 1% (T3) sorbate potassium 0.5% and L. plantarum probiotic 107CFU/g (T4), and sorbate potassium 1% and L. plantarum probiotic 107CFU/g (T5). Each treatment had three replicates. The results indicated the highest final weight, weight gain, specific growth rate, and condition factor observed in T5 (sorbate potassium 1% and L. plantarum probiotic 107CFU/g) (P<0.05). The difference between T5 and the other treatments was significant (P<0.05). The lowest FCR was observed in T4 and T5 and the highest were observed in the control treatment (P<0.05). The highest number of white blood cells was observed in T5, which was relatively higher than other treatments (P<0.05). There was no significant difference between treatments in other blood indices (P>0.05). Overall, supplementing sorbate potassium 1% and L. plantarum probiotic 107CFU/g to the diets of goldfish are recommended.  

کلیدواژه‌ها [English]

  • Goldfish
  • L. plantarum
  • Sorbate potassium
  • Growth
  • Hematological parameters
Alishahi M., Dezfuly Z., Mohammadian T., Mesbah M. 2018. Effects of two probiotics, Lactobacillus plantarum and Lactobacillus bulgaricus on growth performance and intestinal lactic acid bacteria of Cyprinus carpio. Iranian Journal of Veterinary Medicine 12(3), 207-218.
Akrami R., Ghelichi A., Ebrahimi A. 2015. The effects of inulin as prebiotic on growth, survival and intestinal microflora of rainbow trout (Oncorhynchus mykiss). In: proceeding of first national conference on fisheries sciences. Lahidjan, Iran 11, 20-29.  
Castillo S., Rosales M., Pohlenz C., Gatlin D.M. 2014. Effects of organic acids on growth performance and digestive enzyme activities of juvenile red drum Sciaenops ocellatus. Aquaculture 433, 6-12. 
Eidelsburger U. 1998. Feeding short-chain organic acids to pigs. In: Garnsworthy P.C., Wiseman J. (Eds). Recent Advances in Animal Nutrition. Nottingham University press, Nottingham pp. 93-106.       
FAO. 2002. The state of world fisheries and aquacultures. SOFIA, Rome, Italy.
Feldman B.F., Zinkl J., Jian N. 2000.  Schalms veterinary hematology, Lippincott Williams and Wilkins publication, Philadelphia, USA, 1750 p.   
Firouzbakhsh F., Noori F., Khalesi M.K., Jani K. 2011.  Effects of a probiotic, protexin, on the growth performance and hematology parameters in the Oscar (Astronotus ocellatus) fingerlings. Journal of Fish Physiology and Biochemistry 37, 833-842. 
Flint J.F., Garner M.R. 2009. Feeding beneficial bacteria: a natural solution for increasing efficiency anddecreasing pathogens in animal agriculture. Journal of Applied Poultry Research 18, 367-378.              
Ghosh S., Sinha A., Sahu C. 2008. Dietary probiotic supplementation in growth and health of live-bearing ornamental fishes. Aquaculture Nutrition 14, 289-299. 
Giri S.S., Sukumaran V., Oviya M. 2013. Potential probiotic Lactobacillus plantarum VSG3 improves the growth, immunity, and disease resistance of tropical freshwater fish, Labeo rohita. Fish & Shellfish Immunology 34(2), 660-666.
Hoseinifar S.H., Mirvaghefi A., Merrifield D.L., Yelghi S. 2011. The study of some haematological and serum biochemical parameters of juvenile beluga (Huso huso) fed oligofructose. Fish Physiology and Biochemistry 37, 91-96.       
Jafarnoudeh A., Tokmechi A., Grami A., Haji Moradlou A., Nouri F. 2014. Synergistic effects of organic acid, potassium sorbate and probiotic Lactobacillus casei (Lactobacillus casei) on blood indices in Baby rainbow trout (Oncorhynchus mykiss). Journal of Applied Fisheries Research 6, 59-74.
Kanani A., Shabani A., Safari R. 2018. The effects of separate and combined use of sodium propionate salt and pediococcus acidilactici probiotic on some growth factors in common carp fry (Cyprinus carpio). Quarterly Scientific Journal of Animal Environment Research 12, 293-298.
Kumaree K.K., Akbar A., Anal A.K. 2015. Bioencapsulation and application of Lactobacillus plantarum isolated from catfish gut as an antimicrobial agent and additive in fish feed pellets. Annals of Microbiology 65(3), 1439-1445.       
Lara-Flores M. 2011. The use of probiotic in aquaculture: an overview. International Research Journal of Microbiology 2, 471-478.   
Luckstadt C. 2008. The use of acidifiers in fish nutrition. Perspectives in Agriculture, Veterinary Science. Nutrition and Natural Resources 3, 1-8.   
Merrifield D.L., Dimitroglou A., Foey A., Ringo E. 2010. The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 20, 1-18.  
Mimeault C., Woodhouse A., Rudeau V. 2005. The human lipid regulator, gemfibrozil bioconentrates and reduces testosterone in the Common carp (Cyprinus carpio). Aquatic Toxicology 73, 44-54.      
Enferadi M.H.N., Mohammadizadeh F., Soltani M., Bahri A.H., Sheikhzadeh N. 2018. Effects of LactoBacillus plantarum on growth performance, proteolytic enzymes activity and intestine morphology in rainbow trout (Oncorhynchus mykiss). Turkish Journal of Fisheries and Aquatic Sciences 18(2), 351-356.  
Pandey A., Satoh S. 2008. Effects of organic acids on growth and phosphorus utilization in rainbow trout. Fisheries Science 74 (4), 867-874.  
Pandey A., Tyagi A., Khairnar S.O. 2022. Oral feed-based administration of Lactobacillus plantarum enhances growth, haematological and immunological responses in Cyprinus carpio. Emerging Animal Species 3, p.100003.         
Rahmati H.R., Tukmechi A., Meshkini S., Ebrahimi H. 2011. The increase of resistance of Rainbow trout against Aeromonas hydrophila and Yersinia ruckeri infection using Lactobacillus isolated from the intestine of common carp (Cyprinus carpio). Journal of Veterinary of Iran 2, 26-35.                
Rasdhari M., Parekh T., Dave N., Patel V. 2008. Evaluation of various physic-chemical properties of (Hibiscus safdariff) and (Lactobacillus casei) incorporated probiotic yogurt. Pakistan Journal of Biological Sciences 11, 2101-2108.    
Resende J.A., Silva V.L., Fontes C.O., Souza-Filho J.A., de Oliveira T.L.R., Coelho C.M., Diniz C.G. 2012. Multidrug-resistance and toxic metal tolerance of medically important bacteria isolated from an aquaculture system. Microbes and Environments 27, 449-455.         
Ringo E. 1991. Effects of dietary lactate and propionate on growth and digesta in Arctic charr (Salvelinus alpinus). Aquaculture 96, 321-333.      
Ring E., Strom E. 1994. Microflora of arctic charr (Salvelinus alpinus) gastrointestinal Microflora of free-living fish and effect diet and salinity on intestinal microflora. Aquaculture and Fisheries Management 25, 623-629.  
Romn L., Real F., Sorroza L., Grasso V. 2012. The in vitro effect of probiotic Vagococcus fluvialis on the innate immune parameters of Sparus aurata and Dicentrarchus labrax. Fish and Shellfish Immunology 33, 1071-1075.    
Soltani M., Kane A., Taheri-Mirghaed A., Pakzad K., Hosseini-Shekarabi P. 2019. Effect of the probiotic, Lactobacillus plantarum on growth performance and haematological indices of rainbow trout (Oncorhynchus mykiss) immunized with bivalent streptococcosis/lactococcosis vaccine. Iranian Journal of Fisheries Sciences 18(2), 283-295.    
Sudagar M., Hosseinpoor Z., Hosseini A. 2010. The use of citric acid as attractant in diet of grand sturgeon (Huso huso) fry and its effects on growing factors and survival rate. AACL Bioflux 3, 311-316.     
Suryanarayana A.N., Suresh J., Rajasekhar M.V. 2012. Organic acids in swine feeding: a review. Agricultural Science Research Journals 2, 523-533.  
Topping D.L., Clifton P.M. 2001. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiological Reviews 81(3), 1031-1064.       
Vatsos I.N., Rebours, C. 2015. Seaweed extracts as antimicrobial agents in aquaculture. Journal of Applied Phycology 27, 2017-2035      
Verschuere L., Rombaut G., Sorgeloos P., Verstraete W. 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology Reviews 64(4), 655-671.                
Vulevic J., Rastall R.A., Gibson G.R. 2004. Developing a quantitation approach for determining the in vitro prebiotic potential of dietary oligosaccharids. FEMS Microbiology Letters 236, 153-159.  
Yang S.D., Lin T.S., Liu F., Liou H. 2007. Influence of dietary phosphorus levels on growth, metabolic response and body composition of juvenile silver perch (Bidyanus bidyanus). Aquaculture 230, 405-413.
Ziaei-Nejad S., Rezaei M.H., Takami G.A., Lovett D.L., Mirvaghefi A.R., Shakouri M. 2006. The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp. Aquaculture 252(2-4), 516-524.