Salinity induced high glycerol production in Urmia Lake Dunaliella viridis and Dunaliella salina

Document Type : Original Article

Authors

1 Department of biology, Faculty of Sciences, Urmia University, Urmia, Iran.

2 Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran.

3 Department of Biology and Aquaculture, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran.

Abstract

To determine species with a high yield of biomass, carotenoids, glycerol, and carbohydrates, two Dunaliella species were isolated and genetically identified using ITS molecular marker from hypersaline Lake Urmia in northwest of Iran. Isolates were grown at optimal salinity then transferred to Erlenmeyer flasks contained 1.5M to 3.5M NaCl concentrations. After salinity treatment, cell growth and pigment changes were analyzed for the next two weeks. Carbohydrate and glycerol content also were measured 24 h and 10 days later. The results showed that optimal salinity for D. salina Dsu1 growth is 1.5 M NaCl, whereas Dunaliella viridis DU3 produces the highest biomass yield at 3M NaCl. Suboptimal salt concentration leads to palmella formation in D. viridis. D. salina Dsu1 produced a higher amount of carotenoids compared to D. viridis DU3 especially when it was cultured at 2.5 M. Moreover, a positive correlation was observed between D. salina intracellular glycerol amounts and elevated salinity, maximum increase (2.5 times) compared to the initial density was detected at 3 M NaCl. In D. viridis DU3 also up to 10 times increase in Glycerol content was observed at high NaCl concentrations (3 M and 3.5 M) compared to control. 24 hours following salinity treatment D. viridis showed higher carbohydrate content in all treatments, compared to D. salina. Intracellular carbohydrate concentration decreased by salinity elevation in both D. salina Dsu1 and D. viridis DU3 ten days afterwards. In general, considering higher speed of reproduction and higher amount of carotenoids and glycerol accumulation, D. viridis isolated from Urmia Lake is better option than D. salina for bio-production of those valuable metabolites.

Keywords


ریاحی ح. 1373. مطالعه فلور جلبکی دریاچه ارومیه. پژوهش و سازندگی. 7(25): 25-23.
سلمانی نژاد م. 1393. تأثیر محیط کشت و شدت نور بر رشد کارتنوئیدهای جلبک Dunaliella salina دریاچه ارومیه. مجله پژوهش‌های گیاهی. 28(4):783-771.
Ahmed R.A., He M., Aftab R.A., Zheng S., Nagi M., Bakri R., Wang C. 2017. Bioenergy application of Dunaliella salina SA 134 grown at various salinity levels for lipid production. Scientific Reports 7(1), 1-10.
Ayatallahzadeh Shirazi M., Shariati F., Keshavarz A.K., Ramezanpour Z. 2015. Toxic effect of aluminum oxide nanoparticles on green micro-algae Dunaliella salina. International Journal of Environmental Research 9(2), 585-594.
Ben-Amotz A., Avron M. 1973. The Role of Glycerol in the Osmotic Regulation of the Halophilic Alga Dunaliella parva. Plant Physiology 51(5), 875-878.
Bobrov Z., Tracton I., Taunton K., Mathews M. 2008. Effectiveness of whole dried Dunaliella salina marine microalgae in the chelating and detoxification of toxic minerals and heavy metals. Journal of Alternative and Complementary Medicine 14, S8-S9.
Borowitzka M.A., Siva C.J. 2007. The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. Journal of Applied Phycology 19(5), 567-590.
Chen H., Jiang J.G., Wu G.H. 2009. Effects of salinity changes on the growth of Dunaliella salina and its isozyme activities of glycerol-3-phosphate dehydrogenase. Journal of Agricultural and Food Chemistry 57(14), 6178-6182.
Chow Y.Y.S., Goh S. J. M., Su Z., Ng D., Lim C.Y., Lim N.Y.N., Lee Y.K. 2013. Continual production of glycerol from carbon dioxide by Dunaliella tertiolecta. Bioresource Technology 136, 550-555.
Dubois M., Gilles K., Hamilton J. K., Rebers P.A., Smith F. 1956. A colorimetric method for the determination of sugars. Nature 168(4265), 167.
Esmaeili Dahesht L., Negarestan H., Eimanifar A., Mohebbi F., Ahmadi R. 2010. The fluctuations of physicochemical factors and phytoplankton populations of Urmia Lake, Iran. Iranian Journal of Fisheries Sciences 9(3), 368-381.
Guillard R.R.L. 1975. Culture of Phytoplankton for Feeding Marine Invertebrates. In: Smith M.L. and Chanley M.H., Eds., Culture of Marine Invertebrates Animals, Plenum Press, New York, pp. 29-60.
Gómez P., González M. 2005. The effect of temperature and irradiance on the growth and carotenogenic capacity of seven strains of Dunaliella salina (Chlorophyta) cultivated under laboratory conditions. Biological Research 38, 151-62.
Ivanov I.N., Vítová M., Bišová K. 2019. Growth and the cell cycle in green algae dividing by multiple fission. Folia Microbiologica 64(5), 663-672.
Kuhn J., Müller H., Salzig D., Czermak P. 2015. A rapid method for an offline glycerol determination during microbial fermentation. Electronic Journal of Biotechnology 18(3), 252-255.
Lichtenthaler H.K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In: Methods in Enzymology (Vol 148, pp. 350-382) Academic Press.
Mendoza H., Jiménez Del Río M., García Reina G., Ramazanov Z. 1996. Low-temperature-induced β-carotene and fatty acid synthesis, and ultrastructural reorganization of the chloroplast in Dunaliella salina (chlorophyta). European Journal of Phycology 31(4), 329-331.
Mofeed J. 2015. Effect of salinity and light intensity on production of ß-carotene and glycerol from the halotolerant algae Dunaliella salina (Chlorophyta ) isolated from Zarnik nature reserve, North Sinai (Egypt). The Egyptian Journal of Experimental Biology (Botany)11(1), 21-29.
Moulton T.P., Burford M.A. 1990. The mass culture of Dunaliella viridis (Volvocales, Chlorophyta) for oxygenated carotenoids : laboratory and pilot plant studies. Hydrobiologia 204, 401-408.
Olmos Soto J. 2015. Dunaliella Identification Using DNA Fingerprinting Intron-Sizing Method and Species-Specific Oligonucleotides: New Insights on Dunaliella Molecular Identification. New Insights on Dunaliella Molecular Identification. Handbook of Marine Microalgae: Biotechnology Advances. pp. 559-568.
Plattner F. 1960. Provitamin “A” in seaweeds of Lake Rezayeh. Acta Medica Iranica 4, 26-29.
Rismani S., Shariati M. 2017. Changes of the total lipid and omega-3 fatty acid contents in two Microalgae Dunaliella salina and Chlorella vulgaris under salt stress. Brazilian Archives of Biology and Technology 60, 17-22.
Sijia W., Yangyang B.,  Qi Z., Sixue C., Jiawei M., Chunxia S., Kai C., Zhen X., Chuanfang Z., Weimin M., Hanfa Z., Mingliang Y., Shaojun D. 2017. Salinity-Induced Palmella Formation Mechanism in Halotolerant Algae Dunaliella salina Revealed by Quantitative Proteomics and Phosphoproteomics. Frontiers in Plant Science 8, 810.
Shariati M., Hadi M.R. 2011. Microalgal Biotechnology and Bioenergy in Dunaliella. In: Progress in Molecular and Environmental Bioengineering-From Analysis and Modeling to Technology Applications. InTech. pp. 484-506.
Wang Y., Hu B., Du S., Gao S., Chen X., Chen D. 2016. Proteomic analyses reveal the mechanism of Dunaliella salina Ds-26-16 gene enhancing salt tolerance in Escherichia coli. PLOS ONE 11(5), 1-20.
Wu Z., Duangmanee P., Zhao P., Ma C. 2016. The effects of light, temperature, and nutrition on growth and pigment accumulation of three Dunaliella salina strains isolated from saline soil. Jundishapur Journal of Microbiology 9(1), 1-9.
Yang F., Hanna MA., Sun R. 2012. Value-added uses for crude glycerol–a byproduct of biodiesel production. Biotechnol Biofuels 5(1), 13.