Effect of Fructo-Oligosaccharides prebiotic on the blood parameters and growth of Rainbow trout (Oncorhynchus mykiss)

Document Type : Original Article

Authors

1 Department of Fisheries, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran.

2 Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

3 Offshore Water Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Chabahar, Iran.

Abstract

The aim of this study was to determine the effect of different levels of prebiotic Fructo-Oligosaccharides on the growth and hematology indices of rainbow trout (Oncorhynchus mykiss). For this purpose, 120 specimens for 42 days in 4 treatments, including treatment (1) control, without prebiotics, treatment (2) food containing 0.05, treatment (3) food containing 0.1, and treatment (4) food containing 0.2% prebiotic were divided and their growth and blood indices were evaluated. The results of the growth parameters showed significant difference in the rate of food conversion coefficient between the treatments (P<0.05), and in the specific growth rate factor, the lowest value was found in the control group and there was a significant difference with other treatments (P<0.05). In the final weight, fish fed prebiotics on day 42 compared to the control group, there was a significant difference (P<0.05). In the hematological parameters, the first sampling, the prebiotic had no significant effect on the number of red blood cells, average red blood cell volume, hematocrit, and hemoglobin (P<0.05), but the treatments on day 42 increased the indices of white blood cell count, the average concentration of red blood cell hemoglobin, and average cellular hemoglobin compared to prebiotic treatments and the control group. We suppose that prebiotics in the edible method has stimulated non-specific immunity in Rainbow trout. It is concluded that the levels of 0.1 and 0.2% Fructo-Oligosaccharides prebiotic in food can improve the condition of growth and hematology indices of Rainbow trout.

Keywords


اکرمی ر.، کریم­آبادی،ع.، محمدزاده ح.، احمدی­فر ا. 1388 .تأثیر پربیوتیک مانان الیگوساکارید بر رشد، بازماندگی، ترکیب بدن و مقاومت به تنش شوری در بچه ماهی سفید (Rutilus frisii kutum) دریای خزر. مجله علوم و فنون دریایی. 8(3): 57-47.
طاعتی ر.، تاتینا م.، بهمنی م. 1392. تاثیر محرک‌های ایمنی ایمنواستر و ایمنووال بر شاخص‌های خونی، بیوشیمیایی و ایمنی فیل ماهیان جوان پرورشی (Huso huso).‏ مجله تحقیقات دامپزشکی.68(2): 182-175.
سوداگر م.، آذری تاکامی ق.، پانوماریف سرگی آ.، محمودزاده ه.، عابدیان کناری ع.م.، حسینی س ع. 1384. بررسی اثرات سطوح مختلف بتائین و متیونین به عنوان جاذب بر شاخص های رشد و بازماندگی فیل ماهیان جوان (Huso huso Linnaeus, 1758).‏ مجله علمی شیلات ایران. 14(2): 50-41.
Agh N., Morshedi V., Noori F., Ghasemi A., Pagheh E., Rashidian, G. 2022. The effects of single and combined use of Lactobacillus plantarum and xylooligosacharide on growth, feed utilization, immune responses, and immune and growth related genes of sobaity (Sparidentex hasta) fingerlings. Aquaculture Reports (25), 101271.‏
Akrami R., Iri Y., Rostami H.K., Razeghi Mansour M. 2013. Effect of dietary supplementation of fructooligosaccharide (FOS) on growth performance, survival, lactobacillus bacterial population and hematoimmunological parameters of stellate sturgeon (Acipenser stellatus) juvenile. Fish and Shellfish Immunology (35): 1235-1239.
Basova M.M. 2018. White blood cell count of the Bullhead Notothen Notothenia coriiceps during the Annual Cycle. Journal of Ichthyology 58(5), 757-560.
Bekcan, S., Dogankaya, L., Cakirogullari, G.C. 2006. Growth and body composition of European catfish (Silurus glanis L.) fed diets containing different percentages of protein.‏
Brown B.A. 1988. Routine hematology procedures. Hematology: Principle and Procedures. pp: 7-122.
de Lima Paz A., da Silva J.M., da Silva K.M.M., Val A.L. 2019. Protective effects of the fructooligosaccharide on the growth performance, hematology, immunology indicators and survival of tambaqui (Colossoma macropomum, Characiformes: Serrasalmidae) infected by Aeromonas hydrophilaAquaculture Reports 15, 100222.
Denev S., Beev, G., Staykov Y., Moutafchieva R. 2009. Microbial ecology of the gastrointestinal tract of fish and the potential application of probiotics and prebiotics in finfish aquaculture. International Aquatic Research 1(1), 1.‏
Eagderi S., Mouludi-Saleh A., Esmaeli H.R., Sayyadzadeh G., Nasri M. 2022. Freshwater lamprey and fishes of Iran; a revised and updated annotated checklist-2022. Turkish Journal of Zoology 46(6), 500-522.
Esmaeili M., Kenari A.A., Rombenso A. 2017. Immunohematological status under acute ammonia stress of juvenile rainbow trout (Oncorhynchus mykiss Walbaum, 1792) fed garlic (Allium sativum) powder-supplemented meat and bone meal-based feeds. Comparative Clinical Pathology (26), 853-866.‏
Fooks L.J., Gibson G. R. 2002. Probiotics as modulators of the gut flora. British Journal of Nutrition 88(1), 39-49.‏
Gibson G.R., Roberfroid M.B. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. The Journal of Nutrition 125(6), 1401-1412.‏
Kisadere I., Aydin M.F., Dönmez H.H. 2022. The influence of chitosan oligosaccharide on some hematological parameters in rats exposed to cadmium. Veterinarski Arhiv 92(1), 87-95.‏
Kundu D., Akter M.N., Chhanda M.S., Khatun M.K., Faridullah M., Ferdoushi Z. 2023. Single or combined effects of safegut and mannanoligosaccharide on growth performance, proximate composition and haematological parameters of walking catfish (Clarias batrachus, Linnaeus, 1758) juveniles. Journal of Survey in Fisheries Sciences pp: 33-49.‏
Pryor G.S., Royes J.B., Chapman F.A., Miles R.D. 2003. Mannanoligosaccharides in fish nutrition: effects of dietary supplementation on growth and gastrointestinal villi structure in Gulf of Mexico sturgeon. North American Journal of Aquaculture 65(2), 106-111.‏
Ringø E., Gatesoupe F.J. 1998. Lactic acid bacteria in fish: a review. Aquaculture 160, 177-203.
Stoskopf M.K. 1993. Fish medicine. General medicine--Special medicine--Freshwater temperate fishes--Salmonids--Goldfish, koi, and carp--Catfishes--Freshwater tropical fishes--Marine tropical fishes--Marine cold-water fishes--Sharks, skates, and rays.‏
Syed Raffic Ali S., Ambasankar K., Ezhil Praveena P., Nandakumar S., Syamadayal J. 2017. Effect of dietary fructooligosaccharide supplementation on growth, body composition, hematological and immunological parameters of Asian seabass (Lates calcarifer). Aquaculture International (25), 837-848.‏
Tacon A.G.J. 1999. Trends in global aquaculture and aquafeed production: 1984-1996 highlights. Feed manufacturing in the Mediterranean region. Recent Advances in Research and Technology, CIHEAM/IAMZ, Zaragoza Spain (37), 107-122.‏
Van der Oost R., Beyer J., Vermeulen N.P. 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology 13(2), 57-149.‏
Wang C.Y., Li Z.B. 2020. Growth performance, digestive enzyme activity and immune response of Japanese sea bass, Lateolabrax japonicus fed with fructooligosaccharide. Aquaculture Nutrition 26(2), 296-305.‏
Xu H., Su Y., Zhang L., Tian T., Xu R., Sun H., Yu D. 2022. Effects of dietary galactooligosaccharide on growth, antioxidants, immunity, intestinal morphology and disease resistance against Aeromons hydrophila in juvenile hybrid sturgeon (Acipenser baerii♀× A. schrenckii♂). Aquaculture Reports (23), 101097.‏
Zhang C.N., Li X.F., Xu W.N., Zhang D.D., Lu K.L., Wang L. N., Liu W.B. 2015. Combined effects of dietary fructooligosaccharide and Bacillus licheniformis on growth performance, body composition, intestinal enzymes activities and gut histology of triangular bream (Megalobrama terminalis). Aquaculture Nutrition 21(5), 755-766.‏