Effect of sodium selenite supplementation on survival, growth, and hematological parameters of juvenile Siberian sturgeon (Acipenser Baerii)

Document Type : Original Article

Authors

1 Department of Fisheries, Science and Research Branch, Islamic Azad University, P.O. Box: Tehran, Iran.

2 Department of Fisheries, Lahijan Branch, Islamic Azad University, Lahijan, Iran.

3 Department of Biology, Faculty of Life Sciences, Varamin-Pishva Branch, Islamic Azad University, Pishva, Iran.

Abstract

Selenium is an important trace element for maintaining the fish health. This study aimed to investigate the effect of sodium selenite on survival, growth and some hematological factors relating to the red blood cells of Siberian sturgeon. Three hundred Siberian sturgeon with initial mean weight 10.0±0.5g were randomly distributed in five treatments with three replications and fed with different levels of sodium selenite including zero (control), 0.2, 0.4, 0.8 and 1.6 mg sodium selenite for eight weeks. The results showed that the sodium selenite supplementation significantly increased the final weight and daily growth coefficient of fish with the maximum values of 25.63±0.68 g and 1.22±0.07% d-1 in fish fed with 1.6 mg kg-1 sodium selenite (P<0.05). The feed conversion ratio was significantly decreased after eight weeks feeding with sodium selenite with minimum of 1.79±0.10 in fish fed with 1.6 mg kg-1 sodium selenite (P<0.05). furthermore, equal to or more than 0.8 mg kg-1 supplementation of sodium selenite significantly enhanced the hemoglobin content, hematocrit percentage, and red blood cells count compared to the control (P<0.05). In conclusion, findings of the present study illustrated that 0.4mg kg-1 supplementation of sodium selenite is the best level for maximizing the growth of Siberian sturgeon, while 0.8mg kg-1 sodium selenite supplementation provides the best response in the synthesis of blood cells.

Keywords


Abdel-Tawwab M., Mousa M.A., Abbass F.E. 2007. Growth performance and physiological response of African catfish, Clarias gariepinus (B.) fed organic selenium prior to the exposure to environmental copper toxicity. Aquaculture 272(1-4), 335-345.
Adel M., Yeganeh S., Dadar. M., Sakai M., Dawood M.A.O. 2016. Effects of dietary Spirulina platensis on growth performance, humoral and mucosal immune responses and disease resistance in juvenile great sturgeon (Huso huso Linnaeus, 1754). Fish & Shellfish Immunology 56. 436-444.
Arshad U., Takami G., Sadeghi M., Bai S., Pourali H., and Lee S. 2011. Influence of dietary L-selenomethionine exposure on growth and survival of juvenile Huso huso. Journal of Applied Ichthyology. 27(2). 761-765.
Arthur J.R., Nicol F. and Beckett G.J. 1990. Hepatic iodothyronine 5′-deiodinase. The role of selenium. Biochemical Journal 272(2), 537-540.
Besharat M., Rajabi Islami H., Soltani M., Mousav S. A. 2021. Effect of nanoliposomes coated with astaxanthin on growth performance indices and feed product efficiency of rainbow trout (Oncorhynchus mykiss). Journal of Renewable Natural Resources 12(1), 95-105.
Canosa L.F., Bertucci J.I. 2020. Nutrient regulation of somatic growth in teleost fish. The interaction between somatic growth, feeding and metabolism. Molecular and Cellular Endocrinology 518, 110-129.
Cech J.J., Crocker C.E. 2002. Physiology of sturgeon: effects of hypoxia and hypercapnia. Journal of Applied Ichthyology 18(4-6), 320-324.
Chebanov M., Billard R. 2001. The culture of sturgeons in Russia: production of juveniles for stocking and meat for human consumption. Aquatic Living Resources 14(6), 375-381.
Cheng W.H. and Lei X. G. 2017. Chapter 37 - Selenium: Basic Nutritional Aspects. Molecular, Genetic, and Nutritional Aspects of Major and Trace Minerals. J. F. Collins. Boston, Academic Press: 449-461.
De Riu N., Lee J.W., Huang Y.S.S., Moniello G., Hung S.S.O. 2014. Effect of dietary selenomethionine on growth performance, tissue burden, and histopathology in green and white sturgeon. Aquatic Toxicology 148, 65-73.
Durigon E.G., Kunz D.F, Peixoto N.C., Uczay J., Lazzari R. 2019. Diet selenium improves the antioxidant defense system of juveniles Nile tilapia (Oreochromis niloticus L.). Brazilian Journal of Biology 79(3), 527-532.
El-Hammady A., El-Kasheif M. and Ibrahim S. 2007. Synergistic reactions between vitamin E and selenium in diets of hybrid Tilapia (Oreochromis niloticus × Oreochromis aureus) and their effect on the growth and liver histological structure. Egyptian Journal of Aquatic Biology and Fisheries 11(1) 53-81.
El-Sharawy M.E., Hamouda M., Soliman A.A., Amer A.A., El-Zayat A.M., Sewilam H., Younis E.M., Abdel-Warith A.-W.A., Dawood M.A.O. 2021. Selenium nanoparticles are required for the optimum growth behavior, antioxidative capacity, and liver wellbeing of Striped catfish (Pangasianodon hypophthalmus). Saudi Journal of bBiological Sciences 28(12), 7241-7247.
Elia A.C., Prearo M.,. Pacini N,. Dörr A.J.M., Abete M.C. 2011. Effects of selenium diets on growth, accumulation and antioxidant response in juvenile carp. Ecotoxicology and Environmental Safety 74(2), 166-173.
Falahatkar, B. 2018. Nutritional Requirements of the Siberian Sturgeon: An Updated Synthesis. The Siberian Sturge on (Acipenser baerii, Brandt, 1869) Volume 1 - Biology. P. Williot, G. Nonnotte, D. Vizziano-Cantonnet and M. Chebanov. Cham, Springer International Publishing pp: 207-228.
Farahnak Roudsari S., Rajabi Islami H., Mousavi S.A., Shamsaie Mehrgan M., 2021. Folic Acid-Coated Nanochitosan Ameliorated the Growth Performance, Hematological Parameters, Antioxidant Status, and Immune Responses of Rainbow Trout (Oncorhynchus mykiss). Frontiers in Veterinary Science 8.
Fontagné-Dicharry S., Véron V., Larroquet L., Godin S., Wischhusen P., Aguirre P., Terrier F., Richard N., Bueno M., Bouyssière B., Antony Jesu Prabhu P., Tacon S.J., Kaushik P. 2020. Effect of selenium sources in plant-based diets on antioxidant status and oxidative stress-related parameters in rainbow trout juveniles under chronic stress exposure. Aquaculture 529, 735684.
Gatlin Iii D.M.,Wilson R.P. 1984. Dietary selenium requirement of fingerling channel catfish. The Journal of Nutrition 114(3), 627-633.
Iqbal S., Atique U., Mahboob S., Haider M.S., H. Iqbal S., Al-Ghanim K.A., Al-Misned F., Ahmed Z., Mughal M. S. 2020. Effect of supplemental selenium in fish feed boosts growth and gut enzyme activity in juvenile tilapia (Oreochromis niloticus). Journal of King Saud University - Science 32(5), 2610-2616.
Iqbal S., Atique U., Mughal M.S., Khan N., Haider M.S., Iqbal K., Akmal M. 2017. Effect of selenium incorporated in feed on the hematological profile of tilapia (Oreochromis niloticus). Journal of Aquaculture Research & Development 8(10), 1000513.
Khan K.U., Zuberi A., Nazir S., Ullah I., Jamil Z., Sarwar H. 2017. Synergistic effects of dietary nano selenium and vitamin C on growth, feeding, and physiological parameters of mahseer fish (Tor putitora). Aquaculture Reports 5, 70-75.
Lall S.P., Kaushik S.J. 2021. Nutrition and Metabolism of Minerals in Fish." Animals (Basel) 11(9).
Le K.T., Fotedar R. 2014. Bioavailability of selenium from different dietary sources in yellowtail kingfish (Seriola lalandi). Aquaculture 420, 57-62.
Le K.T., Fotedar R., Partridge G. 2014. Selenium and vitamin E interaction in the nutrition of yellowtail kingfish (Seriola lalandi): physiological and immune responses. Aquaculture Nutrition 20(3), 303-313.
Lin Y.-H. 2014. Effects of dietary organic and inorganic selenium on the growth, selenium concentration and meat quality of juvenile grouper Epinephelus malabaricus. Aquaculture 430, 114-119.
Liu L.W., Liang X.F., Li J., Fang J.G., Yuan X.C., Li J., Alam M.S. 2018. Effects of dietary selenium on growth performance and oxidative stress in juvenile grass carp Ctenopharyngodon idellus. Aquaculture Nutrition 24(4), 1296-1303.
Mansour A.T.-E., Goda A.A., Omar E.A., Khalil H.S., Esteban M.Á. 2017. Dietary supplementation of organic selenium improves growth, survival, antioxidant and immune status of meagre, Argyrosomus regius, juveniles. Fish & Shellfish Immunology 68, 516-524.
Moazenzadeh K., Rajabi Islami H., Zamini A., Soltani M. 2020. Quantitative dietary copper requirement of juvenile Siberian sturgeon, Acipenser baerii, and effects on muscle composition and some enzymatic activities. Aquaculture Nutrition 26(4), 1108-1118.
Munir M.B., Hashim R., Chai Y.H., Marsh T.L., Nor S.A.M. 2016. Dietary prebiotics and probiotics influence growth performance, nutrient digestibility and the expression of immune regulatory genes in snakehead (Channa striata) fingerlings. Aquaculture 460, 59-68.
Nazari K., Shamsaie M., Eila N., Kamali A., Sharifpour I. 2017. The effects of different dietary levels of organic and inorganic selenium on some growth performance and proximate composition of juvenile rainbow trout (Oncorhynchus mykiss). Iranian Journal of Fisheries Sciences 16(1), 238-251.
Oliva-Teles A. 2012. Nutrition and health of aquaculture fish. Journal of Fish Diseace 35(2), 83-108.
Pacitti,D., Lawan M. M., Feldmann J., Sweetman J., Wang T., Martin S. A. M., Secombes C. J. 2016. Impact of selenium supplementation on fish antiviral responses: a whole transcriptomic analysis in rainbow trout (Oncorhynchus mykiss) fed supranutritional levels of Sel-Plex®. BMC Genomics 17(1), 116.
Pacitti D., Lawan M. M., Sweetman J., Martin S. A. M., Feldmann J., Secombes C. J. 2015. Selenium supplementation in fish: a combined chemical and biomolecular study to understand sel-plex assimilation and impact on selenoproteome expression in rainbow trout (Oncorhynchus mykiss). PloS one 10(5), e0127041-e0127041.
Reagan W.J., Irizarry Rovira A.R.D.D.B. 2019. Veterinary hematology: atlas of common domestic and non-domestic species, 3rd edition. Hoboken, NJ, Wiley-Blackwell.
Rider S.A., Davies S.J., Jha A.N., Fisher A.A., Knight J., Sweetman J.W. 2009. Supra-nutritional dietary intake of selenite and selenium yeast in normal and stressed rainbow trout (Oncorhynchus mykiss): Implications on selenium status and health responses. Aquaculture 295(3), 282-291.
Ringø E., Olsen R. E., Gifstad T., Dalmo R. A., Amlund H., Hemre G. I., Bakke A. M. 2010. Prebiotics in aquaculture: a review. Aquaculture Nutrition 16(2), 117-136.
Roque d'Orbcastel E., Lemarié G., Breuil G., Petochi T., Marino G., Triplet S., Dutto G., Fivelstad S., Coeurdacier J.-L., Blancheton J.-P. 2010. Effects of rearing density on sea bass (Dicentrarchus labrax) biological performance, blood parameters and disease resistance in a flow through system. Aquatic Living Resource 23(1), 109-117.
Roubach R., Menezes A., Oh K., Dabbadie L. 2019. Towards guidelines on sustainable aquaculture. FAO Aquaculture Newsletter (60), 55-56.
Safabakhsh M., Mohseni M., Bahri A., Mohammadizadeh F. 2020. Effect of dietary selenium on growth performance, survival rate and biochemical-blood profile of farmed juvenile beluga (Huso huso). Iranian Journal of Fisheries Sciences 19(4), 2077-2088.
Saffari S., Keyvanshokooh S., Zakeri M., Johari S. A., Pasha-Zanoosi H. 2017. Effects of different dietar selenium sources (sodium selenite, selenomethionine and nanoselenium) on growth performance, muscle composition, blood enzymes and antioxidant status of common carp (Cyprinus carpio). Aquaculture Nutrition 23(3), 611-617.
Simmons, A. 1997. Hematology: a combined theoretical and technical approach. Philadelphia, Saunders LTD.
Thrall, M. A., Weiser G., Allison R. W., Campbell T. W. 2012. Veterinary hematology and clinical chemistry. Hoboken, NJ, John Wiley & Sons.
Wang, X., Shen Z., Wang C., Li E., Qin J.G., L. Chen 2019. Dietary supplementation of selenium yeast enhances the antioxidant capacity and immune response of juvenile Eriocheir sinensis under nitrite stress. Fish & Shellfish Immunology 87, 22-31.
Wang, Y., Yan X., Fu L. 2013. Effect of selenium nanoparticles with different sizes in primary cultured intestinal epithelial cells of crucian carp, Carassius auratus gibelio. International Journal of Nanomedicine 8, 4007-4013.
Wischhusen, P., Parailloux M., Geraert P.-A., Briens M., Bueno M., Mounicou S., Bouyssiere B., Antony Jesu Prabhu P., Kaushik S. J., Fauconneau B., Fontagné-Dicharry S. 2019. Effect of dietary selenium in rainbow trout (Oncorhynchus mykiss) broodstock on antioxidant status, its parental transfer and oxidative status in the progeny. Aquaculture 507, 126-138.
Zhou, Y.-j., Zhang S.-p., Liu C.-w., Cai Y.-q. 2009. The protection of selenium on ROS mediated-apoptosis by mitochondria dysfunction in cadmium-induced LLC-PK1 cells. Toxicology in Vitro 23(2), 288-294.