Effect of dietary nucleotides on some growth performance and apparent digestibility of Sterlet sturgeon (Acipenser ruthenus Linnaeus, 1758)

Document Type : Original Article

Authors

1 Department of Fisheries, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 Department of Animal Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran.

3 International Sturgeon Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran.

Abstract

The present study was performed to investigate the effect of dietary nucleotides on the growth and apparent digestibility of Sterlet sturgeon, Acipenser ruthenus. Fish with an average body weight of 95.33±1.23g and total length of 0.30±0.5 cm were divided into 5 experimental groups with 3 replications, each containing 12 fish which were randomly distributed in tanks with 500 L working capacity. The fish were fed diets containing 0.0, 1.5, 2.5, 3.5, and 5.0 g kg-1 nucleotide. The experiment was conducted in a completely random design for 10 weeks. The results showed a significant increase in the weight gain percentage of fish in treatments of 2.5, 3.5, and 5.0 g kg-1 nucleotide than those in the control treatment (P<0.05), reaching the highest percentage of 119.07±19.97% in fish fed diet supplemented with 5.0 g kg-1 nucleotide (P<0.05). However, no significant difference was recorded in the values of this variable between fish-fed diets supplemented with more than 2.5 g kg-1 nucleotide (P>0.05). There was also a significant increase in the total length of fish fed diet supplemented with 5.0 g kg-1 nucleotide (25.5±0.8 %) compared to those fed the basal diet (17.76±0.73 %) (P<0.05), while no significant difference was found with those in fish fed diet supplemented with 3.5 g kg-1 nucleotide (P>0.05). The highest apparent digestibility of dry weight was 80.32±0.47% in fish fed a diet containing 5.0 g kg-1 nucleotide, while the lowest value was 73.24±0.45% in fish fed the basal diet (P<0.05). The highest apparent digestibility of protein was 90.94±0.24% in fish-fed a diet containing 5.0 g kg-1 nucleotide, which had a significant difference with that in fish fed a diet containing less than 2.5 g kg-1 nucleotide (P<0.05). However, no significant difference was observed in lipid apparent digestibility of fish between the experimental treatments (P>0.05). In general, findings of the present research indicated that dietary supplementation of nucleotide in the diet has a significant impact on the nutrient digestibility of sterlet sturgeon, with the best response obtained when fish fed a diet containing 3.5 g kg-1 nucleotide for ten weeks.

Keywords


اوجی‌فرد آ. ظریف‌فرد آ.، ستوده آ. 1394. تأثیر نوکلئوتید جیره بر رشد و ترکیب اسیدهای چرب هامور پرورشی (Epinephelus coioides). علوم و فنون شیلات. 4 (2): 25-11.
بارانی ه. راهداری ع.، سنچولی ن. 1394. تأثیر نوکلئوتید در جیره بر برخی شاخص‌های رشد، ترکیب لاشه و برخی شاخص‌های استرس در ماهی سفیدک سیستان (Schizothorax zarudnyi). مجله تحقیقات  دامپزشکی. 71(2): 152-145.
دل افکار خ.، ستاری م.، خارا ح.، فلاحتکار ب. 1395. مقایسه کارایی روغن گل میخک و کتامین و تغییرات فیزیولوژیک در بیهوشی بچه ماهی استرلیاد (Acipenser ruthenus). زیست‌شناسی جانوری تجربی. 5(3): 96-79.‎
Abtahi B., Yousefi M., Kenari A.A. 2013. Influence of dietary nucleotides supplementation on growth, body composition and fatty acid profile of Beluga sturgeon juveniles (Huso huso). Journal of Aquaculture Research 44(2), 254-260.
Adamek Z., Hamackova J., Kouril J., Vachta R. 1996. Probiotics supplementation on farming success inrainbow trout (Oncorhynchus mykiss) and wels (Silurus glais) under conditions of intensive culture. Krmiva: Časopis o Hranidbi Životinja, Proizvodnji i Tehnologiji Krme 38(1), 11-20.
 AOAC, 2005. Official Methods of Analysis of AOAC International. (18th Edition). Maryland, USA), pp. 1-68.
Bueno J., Torres M., Almendros A., Carmona R., Nunez M.C., Rios A., Gil A. 1994. Effects of dietary nucleotides on smallintestinal repair after diarrhoea. Histological and ultra-structural changes. Gut 35(7), 926-933.
Burrells C., William P.D., Southage P.J., Wadsworth S.L. 2001. Dietary nucleotides: a novel supplement in fish feeds 2. Effects on vaccination, salt water transfer, growth rate and physiology of Atlantic salmon. Journal of Aquaculture 199(1-2), 171–184.
Carver J.D., Walker W.A. 1995. The role of nucleotides in human nutrition. Journal of Nutritional Biochemistry 6(2), 58-72.
Clifford A.J., Story D.L. 1976. Levels of purines in foods and their metabolic effects in rats. Journal of Nutrition 106(3), 435-442.
Cosgrove M. 1998. Nucleotides. Journal of Nutrition 14(10), 748-751.
Deng K. 2000. Artificial reproduction and early life stages of the green sturgeon (Acipenser medirostris). MS thesis, University of California, Davis. 63p.
Frankic T., Pajk T., Rezar V., Levart A., Salobir J., 2006. The role of dietary in nucleotides reduction of DNA damage induced by T-2 toxin and deoxynivalenol in chiken leukocytes. Journal of Food and Chemical Toxicology 44(11), 1838-1844.
Furukawa A., Tsukahara H. 1966. On the acid digestion method for the determination of chromic oxide as an index substance in the study of digestibility of fish feed. Bulletin of the Japanese Society of Scientific Fisheries 32(6), 502-508
Gil A. 2002. Modulation of the immune response mediated by dietary nucleotides. European Journal of Clinical Nutrition 56(3), S1-S4.
Glencross B.D., Booth M., Allan, G.L. 2007. A feed is only as good as its ingredients; a review of ingredient evaluation strategies for aquaculture feeds. Journal of Aquaculture Nutrition 13(1), 17-34.
Glencross B., Rutherford N. 2010. Dietary strategies to improve the growth and feed utilization of barramundi (Lates calcarifer) under high water temperature conditions. Journal of Aquaculture Nutrition 16 (4), 343-350.
Grimble G.K., Westwood O.M.R. 2000. Nucleotides. In Nutrition and Immunology: Principles and Practice. Humana Press Inc., Totowa, NJ, USA, pp. 135-144.
Hensel K., Holcík J. 1997. Past and current status of sturgeons in the upper and middle Danube River. In: Birstein V.J., Waldman J.R., Bemis W.E. (Edition), Sturgeon biodiversity and conservation. Developments in Environmental Biology of Fishes 17, 185-200.
Hunt A.Ö., Yılmaz F.Ö., Engin K., Berköz M., Gündüz S.G., Yalın S., Şahin N.Ö. 2014. The effects of fish meal replacement by yeast based nucleotides on growth, body composition and digestive enzyme activity in rainbow trout juveniles (Onchorchyncus mykiss). Journal of Aquaculture-Bamidgeh 964, 10.
Ishida Y., Hidaka I., 1987. Gustatory responses profiles for amino acids, glycinebetaine and nucleotides in several marine teleosts. Journal of Nippon Suisan Gakkaishi 53(8), 1391-1398.
Kiyohara S., Hidaka I., Tamura T. 1975. Gustatory response in the puffer-II. Single fiber analysis. Bulletin of the Japanese Society for the Science of Fish. 41, 383-391.
Koven W.M., Henderson R.J., Sargent J.R. 1994. Lipid digestion in turbot (Scophtalmus maximus): Lipid class and fatty acid composition of digesta from different segments of the digestive tract. Journal of Fish Physiology and Biochemistry 13, 69-79.
Lerner A., Shamir R. 2000. Nucleotides in infant nutrition: a must or an option. Israel Medical Association Journal 2, 772-774.
Lie O., Lied E., Lambertsen G. 1987. Lipid digestion in cod (Gadus morhua). Journal of Comparative Biochemistry and Physiology 88(2), 697-700.
Lin Y.H., Wang H., Shiau S.Y. 2009. Dietary nucleotide supplementation enhances growth and immune responses of grouper (Epinephelus malabaricus). Journal of Aquaculture Nutrition 15 (2), 117-122.
Lovell R.T. 1989. Nutrition and feeding of fish. Van Nostrand Reinhold, New York. 260 pp.
Madalla N., Wille M., Sorgeloos P. 2013. Effects of dietary nucleotides on growth rate and disease resistance of crustaceans using axenic artemia culture tests. Tanzania Journal of Agricultural Sciences 12(1).
Mackie A.M. 1973. The chemical basis of food detection in the lobster (Homarus gammarus), Journal of Marine. Biology 21, 103-108
Mackie A.M., Adron, J.W. 1978. Identification of inosine and inosine 5'-monophosphate as the gustatory feeding stimulants for the turbot (Scophthalmus maximus). Comparative Biochemistry and Physiology Part A: Physiology 60(1), 79-83.
Menghe L.H., Oberle D.F., Lucas P.M. 2013. Apparent digestibility of alternative plant-protein feedstuffs for channel catfish (Ictalurus punctatus) (Rafinesque). Journal of Aquaculture Research 44(2), 282-288.
Reda R.M., Selim K.M., Mahmoud R., El-Araby I.E., 2018. Effect of dietary yeast nucleotide on antioxidant activity, non-specific immunity, intestinal cytokines, and disease resistance in Nile Tilapia. Journal of Fish and Shellfish Immunology 80, 281-290.
Rumsey G.L., Winfree R.A., Hughes S.G. 1992. Nutritional value of dietary nucleic acids and purine bases to rainbow trout (Oncorhynchus mykiss). Journal of Aquaculture 108, 97-110.
Safari O. 2011. Study on the production of canola protein concen- trate through different processing methods (physical, chemical and biological) with aim of using in the diet of rainbow trout (Oncorhynchus mykiss). PhD thesis. University of Tehran, pp. 263.
Safari O., Naserizadeh M., Mohammadi.Arani M. 2014. Digestibility of selected feedstuffs in subadult Caspian great sturgeon (Huso huso) using settlement faecal collection and stripping methods. Journal of Aquaculture Nutrition 22, 293-303
Shiau S. Y., Liang H. S. 1995. Carbohydrate utilization and digestibility by tilapia, Oreochromis niloticus× O. aureus, are affected by chromic oxide inclusion in the diet. Journal of Nutrition 125(4), 976-982.
Sokolov L.I., Vasilev V.P. 1989. (Acipenser ruthenus LINNAEUS, 1758). The freshwater fishes of Europe, 1(Part II), Wiesbaden, AULA. Verlag. pp. 227-262
Soudagar M., Imanpour M., Hosseinifar S. 2005. Effect of Optimun growth stimulant supplementation on the growth and survival rate of grand beluga juvenile (Huso huso). Journal of Marine Sciences and Technology 3(2-3), 33-38.
Tie H.M., Wu P., Jiang W.D., Liu Y., Kuang S.Y., Zeng, Y.Y., Jiang J., Tang L., Zhou X.Q. Feng L. 2019. Dietary nucleotides supplementation affect the physicochemical properties, amino acid and fatty acid constituents, apoptosis and antioxidant mechanisms in grass carp (Ctenopharyngodon idellus) muscle. Journal of Aquaculture 502, 312-325.
Turchini G.M., Francis D.S. 2009. Fatty acid metabolism (desaturation, elongation and β-oxidation) in rainbow trout fed fish oil or linseed oil-based diets. British Journal of Nutrition 102(1), 69-81.
Uauy R., Stringel G., Thomas R., Quan R. 1990. Effect of dietary nucleosides on growth and maturation of the developing gut in the rat. Journal of Pediatric Gastroenterology and Nutrition 10(4), 497-503.
Xu L., Ran C., He S., Zhang J., Hu J., Yang Y., Du Z., Yang Y., Zhou Z. 2015. Effects of dietary yeast nucleotides on growth, non-specific immunity, intestine growth and intestinal microbiota of juvenile hybrid tilapia (Oreochromis niloticus♀× Oreochromis aureus♂). Journal of Animal. Nutrition 1(3), 244-251.
Yaghobi M., Dorafshan S., Paykan F., Mahmoudi N. 2014. Growth performance and some haematological parameters of ornamental striped catfish (Pangasianodon hypophthalmus) fed on dietary nucleotide. Iranian Journal of Veterinary Research 48, 262-265.
Yousefi M., Abtahi B., Kenari A. A. 2012. Hematological, serum biochemical parameters, and physiological responses to acute stress of Beluga sturgeon (Huso huso, Linnaeus 1785) juveniles fed dietary nucleotide. Comparative Clinical Pathology 21, 1043-1048.