اثر ریزپلاستیک و فلز مس بر هموسیت‌های مختلف در خرچنگ دراز آب شیرین Astacus leptodactylus

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی محیط زیست ، دانشکده منابع طبیعی و محیط زیست ، دانشگاه بیرجند، بیرجند، ایران.

2 گروه مهندسی محیط زیست ، دانشکده منابع طبیعی و محیط زیست ، دانشگاه بیرجند، بیرجند، ایران

3 بخش بهداشت و بیماری حیوانات آبزی ، گروه علوم بالینی ، دانشکده دامپزشکی ، دانشگاه شیراز ، شیراز ، ایران.

4 گروه شیلات، دانشکده منابع طبیعی و محیط زیست ، دانشگاه صنعتی خاتم الانبیا ص بهبهان، بههان ، ایران.

چکیده

در این مطالعه، تأثیر سطوح مختلف ریزپلاستیک و فلز مس، به‌تنهایی و به­ صورت توأم، بر تعداد هموسیت کل و هموسیت ­های مختلف در خرچنگ دراز آب شیرین (Astacus leptodactylus) به‌اجرا درآمد. بدین منظور تعداد 378 خرچنگ با میانگین طول0/76±10/64 سانتی­متر و وزن 15±41/12 گرم در 27 آکواریوم تقسیم شدند. طول دوره در معرض قرارگیری 28 روز بود، بررسی تعداد هموسیت­ کل و هموسیت ­های مختلف در پایان دوره نمونه­ همولنف از خرچنگ ­ها گرفته شد. نتایج نشان داد تعداد سلول­ های هیالینوسیت در نمونه‌های در معرض ریزپلاستیک پلی اتیلن 1 میلی­ گرم بر لیتر و تیمار 1 میلی­ گرم بر لیتر سولفات مس کمتر از گروه کنترل بود، تعداد گرانولوسیت در تیمار 1 میلی‌گرم بر لیتر ریزپلاستیک­ پلی ­اتیلن و تیمار 1 میلی­ گرم ­برلیتر ریز پلاستیک توأم با 0/5 میلی­ گرم بر لیتر سولفات مس نسبت به گروه کنترل افزایش داشت و برای سلول ­های نیمه گرانولوسیت 1 میلی ­گرم­ برلیتر ریز پلاستیک توأم با 0/5 میلی­ گرم برلیتر سولفات مس کاهش معنی‌دار و تیمار 1 میلی­ گرم ­برلیتر سولفات مس نیز افزایش معنی ­داری نسبت به گروه کنترل داشت (0/05>P) همچنین تعداد هموسیت کل تیمار­های 0/5 میلی­ گرم بر لیتر ریزپلاستیک توأم با 1 میلی­ گرم بر لیتر سولفات مس و تیمار 1 میلی­ گرم بر لیتر ریزپلاستیک توأم با 1 میلی­گرم سولفات مس نسبت به تیمار کنترل کاهش معنی ­داری نشان داد (0/05>P)، در نهایت می­ توان نتیجه گرفت که ریزپلاستیک پلی ­اتیلن و فلز مس به‌صورت تنها و توأم با هم می ­توانند از جمله عوامل آلاینده و آسیب‌رسان به سیستم ایمنی در خرچنگ دراز آب شیرین باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of microplastics and copper metal on different hemocytes in freshwater crayfish Astacus leptodactylus

نویسندگان [English]

  • Amir Zeidi 1
  • Mohammadreza Rezaei 1
  • Mohammad Hossein Sayadi 2
  • Amin Gholamhoseini 3
  • Mahdi Banaee 4
1 Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran.
2 Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran
3 Department of Aquatic Animal Health and Disease, Department of Clinical Sciences, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran.
4 Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
چکیده [English]

In this study, the effect of different levels of microplastics and copper, alone and in combination, on the number of total hemocytes and different hemocytes in freshwater crayfish (Astacus leptodactylus) was conducted. For this purpose, 378 crayfish with an average length of 10.64±0.76 cm and a weight of 41.12±5.15 grams were divided into 27 aquaria. The exposure period was 28 days, the number of total hemocytes and different hemocytes were checked at the end of the experiment, and hemolymph samples were taken from the crayfish. The results showed that the number of hyalinocytes in the samples exposed to 1 mg/L polyethylene microplastic and 1 mg/L copper sulfate treatment was less than in the control group. The number of granulocytes increased in the treatment of 1 mg/L of polyethylene microplastic and 1 mg/L of microplastic combined with 0.5 mg/L of copper sulfate compared to the control group, and for semi-granulocyte cells, 1 mg/L of fine plastic combined with 0.5 mg/L of copper sulfate significantly decreased and the treatment with 1 mg/L of copper sulfate also had a significant increase compared to the control group (P<0.05). Also, the number of total hemocytes in the treatments of 0.5 mg/L of microplastic combined with 1 mg/L of copper sulfate and the treatment of 1 mg/L of microplastic combined with 1 mg/L of copper sulfate decreased significantly compared to the control treatment (P<0.05), finally it can be concluded that polyethylene microplastic and copper metal alone and together can be among the polluting and damaging factors to the immune system in freshwater crayfish.

کلیدواژه‌ها [English]

  • Hemolymph
  • Immune system
  • Crayfish
  • Environmental pollutant
Alcorlo P., Otero M., Crehuet M., Baltanás A., Montes C. 2006. The use of the red swamp crayfish (Procambarus clarkii, Girard) as indicator of the bioavailability of heavy metals in environmental monitoring in the River Guadiamar (SW, Spain). Science of the Total Environment 366(1), 380-390.
Alimba C.G., Faggio C. 2019. Microplastics in the marine environment: Current trends in environmental pollution and mechanisms of toxicological profile. Environmental Toxicology and Pharmacology 68(1), 61-74.
Allam B., Paillard C., Howard A., Le Pennec M. 2000. Isolation of the pathogen Vibrio tapetis and defense parameters in brown ring diseased Manila clams Ruditapes philippinarum cultivated in England. Diseases of Aquatic Organisms 41(2), 105-113.
Banaee M., Akhlaghi M., Soltanian S., Gholamhosseini A., Heidarieh H., Fereidouni M.S. 2019. Acute exposure to chlorpyrifos and glyphosate induces changes in hemolymph biochemical parameters in the crayfish, Astacus leptodactylus (Eschscholtz, 1823). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 222(1), 145-155.
Banaee M., Soltanian S., Sureda A., Gholamhosseini A., Haghi B.N., Akhlaghi M., Derikvandy A. 2019. Evaluation of single and combined effects of cadmium and micro-plastic particles on biochemical and immunological parameters of common carp (Cyprinus carpio). Chemosphere 236(1), 124335.
Banaee M., Akhlaghi M., Soltanian S., Sureda A., Gholamhosseini A., Rakhshaninejad M. 2020. Combined effects of exposure to sub-lethal concentration of the insecticide chlorpyrifos and the herbicide glyphosate on the biochemical changes in the freshwater crayfish Pontastacus leptodactylusEcotoxicology 29(1), 1500-1515.
Gu S.H., Nicolas V., Lalis A., Sathirapongsasuti N., Yanagihara R. 2013. Complete genome sequence and molecular phylogeny of a newfound Hantavirus harbored by the Doucet’s musk shrew (Crocidura douceti) in Guinea. Infection, Genetics and Evolution 20(1), 118-123.
Battison A., Cawthorn R., Horney B. 2003. Classification of Homarus americanus hemocytes and the use of differential hemocyte counts in lobsters infected with Aerococcus viridans var. homari (Gaffkemia). Journal of Invertebrate Pathology 84(3), 177-197.
Besson M., Jacob H., Oberhaensli F., Taylor A., Swarzenski P.W., Metian M. 2020. Preferential adsorption of Cd, Cs and Zn onto virgin polyethylene microplastic versus sediment particles. Marine Pollution Bulletin 156(1), 111223.
Brennecke D., Duarte B., Paiva F., Caçador I., Canning-Clode J. 2016. Microplastics as vector for heavy metal contamination from the marine environment. Estuarine, Coastal and Shelf Science 178(1), 189-195.
Brown D.M., Wilson M.R., MacNee W., Stone V., Donaldson K. 2001. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicology and Applied Pharmacology 175(3), 191-199.
Carballal M.J., Lopez M.C., Azevedo C., Villalba A. 1997. Hemolymph cell types of the mussel Mytilus galloprovincialisDiseases of Aquatic Organisms 29(2), 127-135.
Davarpanah E., Guilhermino L. 2015. Single and combined effects of microplastics and copper on the population growth of the marine microalgae Tetraselmis chuiiEstuarine, Coastal and Shelf Science 167(1), 269-275.
Digka N., Tsangaris C., Torre M., Anastasopoulou A., Zeri C. 2018. Microplastics in mussels and fish from the Northern Ionian Sea. Marine Pollution Bulletin, 135(1), 30-40.
Ding J., Huang Y., Liu S., Zhang S., Zou H., Wang Z., Geng J. 2020. Toxicological effects of nano-and micro-polystyrene plastics on red tilapia: are larger plastic particles more harmless?. Journal of Hazardous Materials 396(1), 122693.
Dolar A., Selonen S., van Gestel C.A., Perc V., Drobne D., Kokalj A.J. 2021. Microplastics, chlorpyrifos and their mixtures modulate immune processes in the terrestrial crustacean Porcellio scaber. Science of the Total Environment 772(1), 144900.
Dong J., Cheng R., Yang Y., Zhao Y., Wu G., Zhang R., Li, X. 2018. Effects of dietary taurine on growth, non-specific immunity, anti-oxidative properties and gut immunity in the Chinese mitten crab Eriocheir sinensisFish & Shellfish Immunology 82(1), 212-219.
Faggio C., Tsarpali V., Dailianis S. 2018. Mussel digestive gland as a model tissue for assessing xenobiotics: an overview. Science of the Total Environment 636(1), 220-229.
Frias J.P., Nash R. 2019. Microplastics: Finding a consensus on the definition. Marine pollution bulletin 138(1), 145-147.
Jiang G., Yu R., Zhou M. 2004. Modulatory effects of ammonia-N on the immune system of Penaeus japonicus to virulence of white spot syndrome virus. Aquaculture 241(1-4), 61-75.
Gopi N., Vijayakumar S., Thaya R., Govindarajan M., Alharbi N.S., Kadaikunnan S., Vaseeharan B. 2019. Chronic exposure of Oreochromis niloticus to sub-lethal copper concentrations: effects on growth, antioxidant, non-enzymatic antioxidant, oxidative stress and non-specific immune responses. Journal of Trace Elements in Medicine and Biology 55(1), 170-179.
Guo H., Xian J.A., Zheng P.H., Lu Y.P., Wang L., Zhang X.X., Wang A L. 2022. Dietary copper affects antioxidant status of shrimp (Penaeus monodon) reared in low salinity water. Aquaculture Reports 22(1), 100979.
Gürkan M. 2018. Effects of three different nanoparticles on bioaccumulation, oxidative stress, osmoregulatory, and immune responses of Carcinus aestuariiToxicological & Environmental Chemistry 100(8-10), 693-716.
Hermabessiere L., Dehaut A., Paul-Pont I., Lacroix C., Jezequel R., Soudant P., Duflos G. 2017. Occurrence and effects of plastic additives on marine environments and organisms: a review. Chemosphere 182(1), 781-793.
Hernández-Pérez A., Noonin C., Söderhäll K., Söderhäll I. 2020. Environmental concentrations of sulfamethoxazole increase crayfish Pacifastacus leniusculus susceptibility to White Spot Syndrome Virus. Fish & Shellfish Immunology 102(1), 177-184.
Herrera A., Ŝtindlová A., Martínez I., Rapp J., Romero-Kutzner V., Samper M. D., Gómez M. 2019. Microplastic ingestion by Atlantic chub mackerel (Scomber colias) in the Canary Islands coast. Marine Pollution Bulletin 139(1), 127-135.
Holmes L.A., Turner A., Thompson R.C. 2012. Adsorption of trace metals to plastic resin pellets in the marine environment. Environmental Pollution 160(1), 42-48.
Hoseini S.M., Sinha R., Fazel A., Khosraviani K., Hosseinpour Delavar F., Arghideh M., Van Doan H. 2022. Histopathological damage and stress‐and immune‐related genes' expression in the intestine of common carp, Cyprinus carpio exposed to copper and polyvinyl chloride microparticle. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology 337(2), 181-190.
Imhof H.K., Laforsch C., Wiesheu A.C., Schmid J., Anger P.M., Niessner R., Ivleva N.P. 2016. Pigments and plastic in limnetic ecosystems: A qualitative and quantitative study on microparticles of different size classes. Water Research 98(1), 64-74.
Impellitteri F., Curpăn A. S., Plăvan G., Ciobica A., Faggio C. 2022. Hemocytes: A Useful Tool for Assessing the Toxicity of Microplastics, Heavy Metals, and Pesticides on Aquatic Invertebrates. International Journal of Environmental Research and Public Health 19(24), 16830.
Jiang R., Lin W., Wu J., Xiong Y., Zhu F., Bao L.J., Zeng E Y. 2018. Quantifying nanoplastic-bound chemicals accumulated in Daphnia magna with a passive dosing method. Environmental Science: Nano 5(3), 776-781.
Johansson M.W., Keyser P., Sritunyalucksana K., Söderhäll K. 2000. Crustacean haemocytes and haematopoiesis. Aquaculture 191(1-3), 45-52.
Kim D., Chae Y., An Y J. 2017. Mixture toxicity of nickel and microplastics with different functional groups on Daphnia magna. Environmental Science & Technology 51(21), 12852-12858.
Kim J.H., Yu Y.B., Choi J.H. 2021. Toxic effects on bioaccumulation, hematological parameters, oxidative stress, immune responses and neurotoxicity in fish exposed to microplastics: A review. Journal of Hazardous Materials 413(1), 125423.
Liao Y.L., Yang J.Y. 2020. Microplastic serves as a potential vector for Cr in an in-vitro human digestive model. Science of the Total Environment 703(1), 134805.
Lorenzon S., De Guarrini S., Smith V.J., Ferrero E/A. 1999. Effects of LPS injection on circulating haemocytes in crustaceansin vivo. Fish & Shellfish Immunology 9(1), 31-50.
Lorenzon S., Francese M., Smith V.J., Ferrero E.A. 2001. Heavy metals affect the circulating haemocyte number in the shrimp Palaemon elegans. Fish & Shellfish Immunology 11(6), 459-472.
Luís L G., Ferreira P., Fonte E., Oliveira M., Guilhermino L. 2015. Does the presence of microplastics influence the acute toxicity of chromium (VI) to early juveniles of the common goby (Pomatoschistus microps)? A study with juveniles from two wild estuarine populations. Aquatic Toxicology 164(1), 163-174.
Matozzo V., Ballarin L., Pampanin D.M., Marin M.G. 2001. Effects of copper and cadmium exposure on functional responses of hemocytes in the clam, Tapes philippinarum. Archives of Environmental Contamination and Toxicology 41(1), 163-170.
Matozzo V., Marin M.G. 2010. First cytochemical study of haemocytes from the crab Carcinus aestuarii (Crustacea, Decapoda). European Journal of Histochemistry 54(1), e9-e9.
Matozzo V., Pagano M., Spinelli A., Caicci F., Faggio C. 2016. Pinna nobilis: a big bivalve with big haemocytes?. Fish & Shellfish Immunology 55(1), 529-534.
Yonar S.M., Köprücü K., Yonar M.E., Silici S. 2017. Effects of dietary propolis on the number and size of pleopadal egg, oxidative stress and antioxidant status of freshwater crayfish (Astacus leptodactylus Eschscholtz). Animal Reproduction Science 184(1), 149-159.
PRC B. of F.M. of A. 2022. 2021 China fishery statistical yearbook. China Agriculture Press, Beijing.
Qin Q., Qin S., Wang L., Lei W. 2012. Immune responses and ultrastructural changes of hemocytes in freshwater crab Sinopotamon henanense exposed to elevated cadmium. Aquatic Toxicology 106(1), 140-146.
Qyli M., Aliko V., Faggio C. 2020. Physiological and biochemical responses of Mediterranean green crab, Carcinus aestuarii, to different environmental stressors: Evaluation of hemocyte toxicity and its possible effects on immune response. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 231(1), 108739.
Ray S., Mukherjee S., Bhunia N.S., Bhunia A.S., Ray M. 2015. Immunotoxicological threats of pollutants in aquatic invertebrates. Emerging Pollutants in the Environment-Current and Further Implications. In Tech, pp. 149-167.
Rodríguez-Estival J., Morales-Machuca C., Pareja-Carrera J., Ortiz-Santaliestra M.E., Mateo R. 2019. Food safety risk assessment of metal pollution in crayfish from two historical mining areas: Accounting for bioavailability and cooking extractability. Ecotoxicology and Environmental Safety 185(1), 109682.
Safari O., Shahsavani D., Paolucci M., Atash M.M.S. 2014. Single or combined effects of fructo-and mannan oligosaccharide supplements on the growth performance, nutrient digestibility, immune responses and stress resistance of juvenile narrow clawed crayfish, Astacus leptodactylus leptodactylus Eschscholtz, 1823. Aquaculture 432(1), 192-203.
Schmidt L., Novo D.L.R., Druzian G.T., Landero J.A., Caruso J., Mesko M.F., Flores, E.M.M. 2021. Influence of culinary treatment on the concentration and on the bioavailability of cadmium, chromium, copper, and lead in seafood. Journal of Trace Elements in Medicine and Biology 65(1), 126717.
Sharifinia M., Bahmanbeigloo Z.A., Keshavarzifard M., Khanjani M.H., Lyons B.P. 2020. Microplastic pollution as a grand challenge in marine research: a closer look at their adverse impacts on the immune and reproductive systems. Ecotoxicology and Environmental Safety 204(1), 111109.
Shi B., Lu J., Hu X., Betancor M.B., Zhao M., Tocher D.R., Jin M. 2021. Dietary copper improves growth and regulates energy generation by mediating lipolysis and autophagy in hepatopancreas of Pacific white shrimp (Litopenaeus vannamei). Aquaculture 537(1), 736505.
Smith G.S., Lumsden J.H. 1983. Review of neutrophil adherence, chemotaxis, phagocytosis and killing. Veterinary Immunology and Immunopathology 4(1-2), 177-236.
Stara A., Kubec J., Zuskova E., Buric M., Faggio C., Kouba A., Velisek J. 2019. Effects of S-metolachlor and its degradation product metolachlor OA on marbled crayfish (Procambarus virginalis). Chemosphere 224(1), 616-625.
Suarez-Serrano A., Alcaraz C., Ibanez C., Trobajo R., Barata C. 2010. Procambarus clarkii as a bioindicator of heavy metal pollution sources in the lower Ebro River and Delta. Ecotoxicology and Environmental Safety 73(3), 280-286.
Swapna K.M., Rajesh R., Lakshmanan P.T. 2012. Incidence of antibiotic residues in farmed shrimps from the southern states of India.
Tao T.Y., Gitlin J.D. 2003. Hepatic copper metabolism: insights from genetic disease. Hepatology 37(6), 1241-1247.
Tavares-Dias M. 2021. Toxic, physiological, histomorphological, growth performance and antiparasitic effects of copper sulphate in fish aquaculture. Aquaculture 535(1), 736350.
Torres F.G., De-la-Torre G.E. 2021. Environmental pollution with antifouling paint particles: Distribution, ecotoxicology, and sustainable alternatives. Marine Pollution Bulletin 169(1), 112529.
Vardhan K.H., Kumar P.S., Panda R.C. 2019. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids 290(1), 111197.
Wang F.I., Chen J.C. 2006. Effect of salinity on the immune response of tiger shrimp Penaeus monodon and its susceptibility to Photobacterium damselae subsp. damselae. Fish & Shellfish Immunology 20(5), 671-681.
Ward R.J., McCrohan C.R., White K.N. 2006. Influence of aqueous aluminium on the immune system of the freshwater crayfish Pacifasticus leniusculus. Aquatic Toxicology 77(2), 222-228.
Wei K., Yang J. 2015. Oxidative damage of hepatopancreas induced by pollution depresses humoral immunity response in the freshwater crayfish Procambarus clarkii. Fish & Shellfish Immunology 43(2), 510-519.
Yuan Y., Jin M., Xiong J., Zhou Q. 2019. Effects of dietary dosage forms of copper supplementation on growth, antioxidant capacity, innate immunity enzyme activities and gene expressions for juvenile Litopenaeus vannamei. Fish & Shellfish Immunology 84(1), 1059-1067.
Zeidi A., Rezaei M R., Sayadi M.H., Gholamhosseini A., Banaee M. 2022. Evaluation of polyethylene microplastic bio-accumulation in hepatopancreas, intestine and hemolymph of freshwater crayfish, Astacus leptodactylus. International Journal of Aquatic Biology 10(4), 273-279.
Zhou M., Wu Q., Wu H., Liu J., Ning Y., Xie S.,  Bi X. 2021. Enrichment of trace elements in red swamp crayfish: Influences of region and production method, and human health risk assessment. Aquaculture 535(1), 736366.