بررسی نقش میکرو RNA ها در بازسازی اندام‌های آسیب دیده در ماهی زبرا

نوع مقاله : مقاله پژوهشی

نویسنده

گروه زیست شناسی، دانشکده علوم پایه، دانشگاه صنعتی خاتم الانبیاء بهبهان، بهبهان، ایران

چکیده

موضوع بازسازی بافت به دلیل ماهیت جذاب و کاربردهای بالقوه آن در بیماری‌های انسانی همواره در کانون توجه تحقیقات قرار داشته است. تعیین مکانیسم‌های سلولی و مولکولی دخیل در فرآیند بازسازی در موجودات مدلی که به خوبی بازسازی را انجام می‌دهند، می‌تواند به ما در توسعه راهبردهایی برای ترمیم و بازسازی بافت در گونه‌هایی مانند انسان که قابلیت بازسازی پایینی دارند کمک کند. میکرو RNA ها، RNA های کوچک غیر کد کننده‌ای هستند که با القاء بیان بیش از حد یا مهار، نقش اساسی در کنترل بیان ژن‌هایی که فرآیند بازسازی بافت را هدایت می‌کنند، را دارند. آزمایش‌های مختلفی جهت شناسایی انواع میکرو RNA هایی که پاسخ‌های بازسازی را هدایت می‌کنند انجام شده است . به دلیل توانایی استثنایی ماهی زبرا (Danio rerio) در فرآیند خود ترمیمی بافت‌های آسیب دیده، این مدل به عنوان محور تحقیقات بازسازی بافت مورد توجه قرار گرفته است. در این بررسی، ما قصد داریم آخرین یافته‌ها در خصوص تأثیر میکرو RNA ها بر فرآیند بازسازی باله‌، قلب و شبکیه چشم ماهی زبرا از طریق تنظیم بیان ژن را مرور کنیم. همچنین چشم‌انداز آینده و پتانسیل توسعه بیشتر این زمینه تحقیقاتی جذاب مورد بحث قرار خواهد گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the role of microRNAs in the regeneration of damaged organs in zebrafish

نویسنده [English]

  • Ahmad Ali Badr
Department of Biology, Faculty of Basic Sciences, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
چکیده [English]

The tissue regeneration due to its attractive nature and potential applications in human diseases has always been in the focus of research. Determining the cellular and molecular mechanisms involved in the regeneration process in model organisms that perform well regeneration can help us to developing strategies for tissue repair and regeneration in species such as humans that have low regenerative capacity. MicroRNAs, are small, non-coding RNAs that play a key role in controlling the expression of genes that conduct tissue regeneration by inducing overexpression or inhibition. Various experiments have been performed to identify the types of microRNAs that conducte regenerative responses. Due to the exceptional ability of the zebrafish (Danio rerio) in the process of self-healing of damaged tissues, this model has been considered as the focus of regeneration researches. In this article, we intend to review the latest findings on the effect of microRNAs on the fin, heart and eye regeneration process of zebrafish by regulating gene expression. The future prospects and further development potential of this fascinating research field will also be discussed.

کلیدواژه‌ها [English]

  • MicroRNA
  • Regeneration
  • Gene expression
  • Zebrafish
Adams J. 2016. Diversity of Small RNA Expression during Zebrafish Caudal Fin Regeneration.
Agrawal V., Johnson S.A., Reing J., Zhang L., Tottey S., Wang G., Badylak S F. 2010. Epimorphic regeneration approach to tissue replacement in adult mammals. Proceedings of the National Academy of Sciences 107(8), 3351-3355.
Alibardi L. 2010. Regeneration in Reptiles and its Position Among Vertebrates. In Morphological and Cellular Aspects of Tail and Limb Regeneration in Lizards (pp. 1-49). Springer, Berlin, Heidelberg.
Badr A.A. 2014. An overview of the structure and function of small RNA molecules and their role in spermatogenesis of mammals. 2th Basic Veterinary Sciences Congress. Shiraz University. Shiraz. 12-13 November 2014. (In Persian)
Badr A.A. 2015. MicroRNAs: An emerging field in anticancer drug resistance. 14th Iranian pharmaceutical sciences congress. Tehran University of Medical Sciences. Tehran 21-24 December 2015.
Badr A.A. 2021. Application of circulating microRNAs to diseases diagnosis in veterinary medicine. 1st National Conference on Modern Veterinary Technologies. Amol University of Special Modern Technologies. Amol. 8 September 2021. (In Persian)
Badr A.A. 2021. Potential Role of MicroRNAs in Cancer Immunotherapy. 15th Virtual International Congress of Immunology and Allergy. Ahvaz Jondishapur University of Medical Sciences. Ahvaz. 27-29 Janury 2021.
Badr AA. 2021. MicroRNAs: Novel biomarkers for male infertility treatment. 12th National and 4th International Biotechnology Congress of Islamic Republic of Iran. University of Tehran. 22-24 August 2021.
Barbosa-Sabanero K., Hoffmann A., Judge C., Lightcap N., Tsonis P.A., Del Rio-Tsonis K. 2012. Lens and retina regeneration: new perspectives from model organisms. Biochemical Journal 447(3), 321-334.
Bely A.E., Nyberg K.G. 2010. Evolution of animal regeneration: re-emergence of a field. Trends in Ecology & Evolution 25(3), 161-170.
Bise T., Sallin P., Pfefferli C., Jaźwińska A. 2020. Multiple cryoinjuries modulate the efficiency of zebrafish heart regeneration. Scientific Reports 10(1), 1-15.
Bringmann A., Iandiev I., Pannicke T., Wurm A., Hollborn M., Wiedemann P., Reichenbach A. 2009. Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects. Progress in Retinal and Eye Research 28(6), 423-451.
Cao Z., Meng Y., Gong F., Xu Z., Liu F., Fang M., Lu H. 2021. Calcineurin controls proximodistal blastema polarity in zebrafish fin regeneration. Proceedings of the National Academy of Sciences 118(2).
Cao, Z., Yang, Q., & Luo, L. (2021). Zebrafish as a Model for Germ Cell Regeneration. Frontiers in Cell and Developmental Biology, 9.
Ceci M., Carlantoni C., Missinato M.A., Bonvissuto D., Di Giacomo B., Contu R., Romano N. 2018. Micro RNAs are involved in activation of epicardium during zebrafish heart regeneration. Cell Death Discovery 4(1), 1-13.
Chendrimada T.P., Finn K.J., Ji X., Baillat D., Gregory R.I., Liebhaber S.A., Shiekhattar R. (2007). MicroRNA silencing through RISC recruitment of eIF6. Nature 447(7146), 823-828.
Davalos V., Moutinho C., Villanueva A., Boque R., Silva P., Carneiro F., Esteller M. 2012. Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. Oncogene 31(16), 2062-2074.
David P.B. 2018. Metazoan MicroRNAs. Cell 173, 20-51.
Demirci Y., Cucun G., Poyraz Y.K., Mohammed S., Heger G., Papatheodorou I., Ozhan G. 2020. Comparative transcriptome analysis of the regenerating zebrafish telencephalon unravels a resource with key pathways during two early stages and activation of wnt/β-catenin signaling at the early wound healing stage. Frontiers in Cell and Developmental Biology 8, 1054.
Goldman D. 2014. Müller glial cell reprogramming and retina regeneration. Nature Reviews Neuroscience 15(7), 431-442.
González-Rosa J.M., Martín V., Peralta M., Torres M., Mercader N. 2011. Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 138(9), 1663-1674.
Hui S.P., Sengupta D., Lee S.G.P., Sen T., Kundu S., Mathavan S., Ghosh S. 2014. Genome wide expression profiling during spinal cord regeneration identifies comprehensive cellular responses in zebrafish. PLoS One 9(1), e84212.
Ishikawa Y., Hosogane M., Okuyama R., Aoyama S., Onoyama I., Nakayama K.I., Nakayama K. 2013. Opposing functions of Fbxw7 in keratinocyte growth, differentiation and skin tumorigenesis mediated through negative regulation of c-Myc and Notch. Oncogene 32(15), 1921-1932.
Jopling C., Boue S., Belmonte J.C.I. 2011. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nature reviews Molecular Cell Biology 12(2), 79-89.
Jopling C., Sleep E., Raya M., Martí M., Raya A., Belmonte J.C.I. 2010. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464(7288), 606-609.
Kamei C.N., Drummond I.A. (2014). Zebrafish as a model for studying kidney regeneration. Current Pathobiology Reports 2(2), 53-59.
Kikuch K. 2014. Advances in understanding the mechanism of zebrafish heart regeneration. Stem Cell Research 13(3), 542-555.
Kikuchi K., Holdway J.E., Werdich A.A., Anderson R.M., Fang Y., Egnaczyk G.F., Poss, K.D. 2010. Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 464(7288), 601-605.
Konar G.J., Ferguson C., Flickinger Z., Kent M.R., Patton J.G. 2021. miRNAs and Müller glia reprogramming during retina regeneration. Frontiers in Cell and Developmental Biology 1851.
Lahne M., Brecker M., Jones S.E., Hyde D.R. 2021. The Regenerating adult zebrafish retina recapitulates developmental fate specification programs. Frontiers in Cell and Developmental Biology, 1927.
Laplace-Builhé B., Bahraoui S., Jorgensen C., Djouad F. 2021. From the basis of epimorphic regeneration to enhanced regenerative therapies. Frontiers in Cell and Developmental Biology 1774.
Lee H.J., Hou Y., Chen Y., Dailey Z.Z., Riddihough A., Jang H.S., Johnson S.L. 2020. Regenerating zebrafish fin epigenome is characterized by stable lineage-specific DNA methylation and dynamic chromatin accessibility. Genome Biology 21(1), 1-17.
Leigh N.D., Dunlap G.S., Johnson K., Mariano R., Oshiro R., Wong A.Y. & Whited J L. (2018). Transcriptomic landscape of the blastema niche in regenerating adult axolotl limbs at single-cell resolution. Nature communications, 9(1), 1-14.
Londono R., Sun A.X., Tuan R S., Lozito T.P. 2018. Tissue repair and epimorphic regeneration: An overview. Current pathobiology Reports 6(1), 61-69.
Long X., Miano J.M. 2011. Transforming growth factor-β1 (TGF-β1) utilizes distinct pathways for the transcriptional activation of microRNA 143/145 in human coronary artery smooth muscle cells. Journal of Biological Chemistry 286(34), 30119-30129.
Lucini C., D’Angelo L., Cacialli P., Palladino A., De Girolamo P. 2018. BDNF, brain, and regeneration: insights from zebrafish. International journal of Molecular Sciences 19(10), 3155.
Marques I.J., Lupi E., Mercader N. 2019. Model systems for regeneration: zebrafish. Development 146(18), dev167692
Mehta A.S., Singh A. 2019. Insights into regeneration tool box: An animal model approach. Developmental Biology 453(2), 111-129.
Mercer S.E., Cheng C.H., Atkinson D.L., Krcmery J., Guzman C E., Kent D.T. & Simon H.G. 2012. Multi-tissue microarray analysis identifies a molecular signature of regeneration. PloS one 7(12), e52375.
Mokalled M.H., Patra C., Dickson A.L., Endo T., Stainier D.Y., Poss K.D. 2016. Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish. Science 354(6312), 630-634.
Nogueira A.F., Costa C.M., Lorena J., Moreira R.N., Frota-Lima G.N., Furtado C., Schneider I. 2016. Tetrapod limb and sarcopterygian fin regeneration share a core genetic programme. Nature Communications 7(1), 1-9.
Rajaram K., Harding R.L., Bailey T., Patton J.G., Hyde D.R. 2014. Dynamic miRNA expression patterns during retinal regeneration in zebrafish: reduced dicer or miRNA expression suppresses proliferation of Müller Glia‐derived neuronal progenitor cells. Developmental Dynamics 243(12), 1591-1605.
Rajaram K., Harding R.L., Hyde D.R., Patton J.G. 2014. miR-203 regulates progenitor cell proliferation during adult zebrafish retina regeneration. Developmental Biology 392(2), 393-403.
Ribeiro A.O., de Oliveira A.C., Costa J.M., Nachtigall P.G., Herkenhoff M.E., Campos V.F., Pinhal D. 2021. MicroRNA roles in regeneration: Multiple lessons from zebrafish. Developmental Dynamics.
Safian D., Wiegertjes G.F., Pollux B.J. 2021. The fish family Poeciliidae as a model to study the evolution and diversification of regenerative capacity in vertebrates. Frontiers in Ecology and Evolution 9, 613157
Schebesta M., Lien C.L., Engel F.B., Keating M.T. 2006. Transcriptional profiling of caudal fin regeneration in zebrafish. The Scientific World Journal 6, 38-54.
Schier, A. F., & Giraldez, A. J. (2006, January). MicroRNA function and mechanism: insights from zebra fish. In Cold Spring Harbor symposia on quantitative biology (71: 195-203). Cold Spring Harbor Laboratory Press.
Seifert A.W., Muneoka K. 2018. The blastema and epimorphic regeneration in mammals. Developmental Biology 433(2), 190-199.
Sharma P., Gupta S., Chaudhary M., Mitra S., Chawla B., Khursheed M.A., Ramachandran R. 2020. Biphasic role of Tgf-β signaling during müller Glia reprogramming and retinal regeneration in zebrafish. Iscience 23(2), 100817.
Sharma P., Gupta S., Chaudhary M., Mitra S., Chawla B., Khursheed M.A., Ramachandran R. 2019. Oct4 mediates Müller glia reprogramming and cell cycle exit during retina regeneration in zebrafish. Life science alliance 2(5).
Shibata E., Yokota Y., Horita N., Kudo A., Abe G., Kawakami K., Kawakami A. 2016. Fgf signalling controls diverse aspects of fin regeneration. Development 143(16), 2920-2929.
Stewart S., Tsun Z.Y., Belmonte J.C.I. 2009. A histone demethylase is necessary for regeneration in zebrafish. Proceedings of the National Academy of Sciences 106(47), 19889-19894.
Tappeiner C., Maurer E., Sallin P., Bise T., Enzmann V., Tschopp M. 2016. Inhibition of the TGFβ pathway enhances retinal regeneration in adult zebrafish. PLoS One 11(11), e0167073.
Thatcher E.J., Paydar I., Anderson K.K., Patton J.G. 2008. Regulation of zebrafish fin regeneration by microRNAs. Proceedings of the National Academy of Sciences 105(47), 18384-18389.
Thomas E.D., Raible, D.W. 2019. Distinct progenitor populations mediate regeneration in the zebrafish lateral line. Elife 8, e43736.
Tsonis P.A., Fox T.P. 2009. Regeneration according to Spallanzani. Developmental dynamics: an official publication of the American. Association of Anatomists 238(9), 2357-2363.
Uemoto T., Abe G., Tamura K. 2020. Regrowth of zebrafish caudal fin regeneration is determined by the amputated length. Scientific Reports 10(1), 1-11.
Vasudevan, S., Tong, Y., & Steitz, J.A. 2007. Switching from repression to activation: microRNAs can up-regulate translation. Science 318(5858), 1931-1934.
Vivien C.J., Hudson J.E., Porrello E.R. 2016. Evolution, comparative biology and ontogeny of vertebrate heart regeneration. NPJ Regenerative Medicine 1(1), 1-14.
Wan J., Goldman D. 2016. Retina regeneration in zebrafish. Current Opinion in Genetics & Development 40, 41-47.
Wang B., Xu M., Li M., Wu F., Hu S., Chen, X., Wang Y. 2020. Mir-25 promotes cardiomyocyte proliferation by targeting fbxw7. Molecular Therapy-Nucleic Acids 19, 1299-1308.
Whitehead G.G., Makino S., Lien, C.L., Keating M.T. 2005. fgf20 is essential for initiating zebrafish fin regeneration. Science, 310(5756), 1957-1960.
Yin V.P., Lepilina A., Smith A., Poss K.D. 2012. Regulation of zebrafish heart regeneration by miR-133. Developmental Biology 365(2), 319-327.
Zhu X., Xiao C., Xiong J.W. 2018. Epigenetic regulation of organ regeneration in zebrafish. Journal of Cardiovascular Development and Disease 5(4), 57.