تعیین غلظت کشندگی میانی (LC50) نانو ذرات دی‌اکسید تیتانیوم سنتز شده با روش شیمیایی و زیستی در ماهی پلاتی تاکسیدو (Xiphophorus maculatus)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه شیلات، دانشکده علوم دریایی، دانشگاه دریانوردی و علوم دریایی چابهار، چابهار، ایران.

چکیده

افزایش استفاده از نانو مواد، منجر به رهاسازی این ذرات در محیط­ های آبی می شود که م ی­توانند روی آبزیان اثراتی داشته باشند، بنابراین مطالعه حاضر با هدف بررسی سمیت نانوذرات دی اکسید تیتانیوم تولید شده با روش شیمیایی و زیستی در ماهی پلاتی تاکسیدو (Xiphophorus maculatus) انجام شد. ابتدا وضعیت بقاء و توان‌زیستی ماهی‌ها در شرایط مشابه با شرایط آزمایشات سمیت بررسی شد، سپس ماهیان پلاتی تاکسیدو برای تعیین غلظت کشندگی میانی نانوذرات در 12 تیمار (هرکدام با سه تکرار) شامل 6 تیمار حاوی غلظت­ های صفر، 80، 160، 320، 640 و 1280 میلی ­گرم در لیتر نانو ذرات دی­اکسید تیتانیوم تولیدشده به روش شیمیایی و 6 تیمار حاوی غلظت­ های صفر، 240، 480، 960، 1920و 3840 میلی ­گرم در لیتر نانو ذرات دی اکسید تیتانیوم تولیدشده به روش زیستی در مخازن 60 لیتری به تعداد 15 ماهی در هر تیمار به مدت 96 ساعت مواجهه شدند و تلفات ماهیان در زمان­ های 24، 48، 72 و 96 ساعت ثبت شد. نتایج آزمایشات بقاء نشان داد که تا 96 ساعت پس از نگهداری ماهیان، هیچ گونه تلفاتی مشاهده نشد و مقدار بقاء %100 بوده است. با افزایش غلظت نانوذرات و افزایش زمان مواجهه درصد مرگ ‌و میر ماهیان افزایش یافت. غلظت کشندگی میانی نانوذرات دی اکسید تیتانیوم تولید شده با روش شیمیایی و زیستی طی 96 ساعت مواجهه به ترتیب برابر با 255/49 و 720/76 میلی‌گرم در لیتر محاسبه شد. بر اساس نتایج این مطالعه نانوذرات تولید شده با روش شیمیایی نسبت به نانوذرات تولید شده با روش زیستی دارای سمیت بیشتری بودند.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of lethal concentration (LC50) of chemically and biologically synthesized titanium dioxide nanoparticles in Xiphophorus maculatus

نویسندگان [English]

  • Mostafa Keshavarz
  • Seraj Bita
Department of Fisheries, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar, Iran.
چکیده [English]

Increasing the use of nanomaterials leads to the release of these particles in aquatic environments that can have effects on aquatic animals, therefore, the present study aimed to investigate the toxicity of titanium dioxide nanoparticles produced by the Chemical and biological method on Xiphophorus maculatus. First, the survival rate of fish under similar conditions to toxicity experiments were investigated  and then Xiphophorus maculatus fish to determine the intermediate lethal concentration (LC50) of nanoparticles in 12 treatments (each with three replications) including 6 treatments containing concentrations of 0, 80, 160, 320, 640 and 1280 mg /L nanoparticles titanium oxide produced chemically and 6 treatments containing concentrations of 0, 240, 480, 960, 1920 and 3840 mg /L titanium dioxide produced biologically method in 60 liter tanks with 15 fish per treatment were exposed for 96 h and fish mortality were recorded at 24, 48, 72 and 96 h. Survival tests showed that up to 96 hours after stocking fish, no mortality were observed and the survival rate was 100%. With increasing the concentration of nanoparticles and increasing the exposure time, the percentage of fish mortality increased. The intermediate lethal concentrations (LC50) of titanium dioxide nanoparticles produced by chemical and biological methods during 96 h of exposure were 255.49 and 720.76 mg/l, respectively. Based on the results of the present study, chemically produced nanoparticles are more toxic than nanoparticles produced biologically method.

کلیدواژه‌ها [English]

  • Toxicology
  • Lethal concentration
  • Titanium dioxide nanoparticles
  • Xiphophorus maculatus
هدایتی س. ع.، دارابی تبار ف.، احمدوند ش. 1395. ارزیابی سمیت حاد نانوذرات دی اکسید تیتانیوم بر شاخص­های خون شناسی ماهی کپور معمولی (Cyprinus carpio) و ماهی کلمه (Rutilus rutilus). مجله علمی پژوهشی فیزیولوژی و بیوتکنولوژی آبزیان 4(2): 34-19.
Abdulrahman A.A., Zhang L., Yang J., Wei F., Chen C., Sun D. 2021. Toxicity assessment of synthesized titanium dioxide nanoparticles in fresh water algae Chlorella pyrenoidosa and a zebrafish liver cell line. Ecotoxicology and Environmental Safety 211, 111948.
Aravind M., Amalanathan M., Mary M.S.M. 2021. Synthesis of TiO 2 nanoparticles by chemical and green synthesis methods and their multifaceted properties. SN Applied Sciences 3(4), 1-10.
Bita S. Keikha A.J., Abdollahzadeh M.Y. 2016. Toxicity study of silver nanoparticles synthesized using aqueous and alcoholic extract of seaweed Sargassum angustifolium in Barbus sharpeyi. Journal of Chemical and Pharmaceutical Research 8(5), 707-712.
Gagné F., Auclair J., Turcotte P., Fournier M., Gagnon C., Sauvé S., Blaise C. 2008. Ecotoxicity of CdTe quantum dots to freshwater mussels: impacts on immune system, oxidative stress and genotoxicity. Aquatic Toxicology 86(3), 333-340.
Gebre S.H., Sendeku M.G. 2019. New frontiers in the biosynthesis of metal oxide nanoparticles and their environmental applications: an overview. SN Applied Sciences 1 (8), 1-28.
Hall S., Bradley T., Moore J.T., Kuykindall T., Minella L. 2009. Acute and chronic toxicity of nano-scale TiO2 particles to freshwater fish, cladocerans, and green algae, and effects of organic and inorganic substrate on TiO2 toxicity. Nanotoxicology 3(2), 91-97.
Hussain I., Singh N.B., Singh A., Singh H., Singh S.C. 2016. Green synthesis of nanoparticles and its potential application. Biotechnology Letters 38(4), 545-560.
Ivask A., Kurvet I., Kasemets K., Blinova I., Aruoja V., Suppi S., Vija H., Käkinen A., Titma T., Heinlaan M., Visnapuu M. 2014. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PloS one 9(7), 10-21.
Kaviyani F.E., Naeemi A.S., Salehzadeh A. 2020. Acute toxicity and effects of titanium dioxide nanoparticles (TiO2 NPs) on some metabolic enzymes and hematological indices of the endangered Caspian trout juveniles (Salmo trutta caspius Kessler, 1877). Iranian Journal of Fisheries Sciences 19(3), 1253-1267.
Khan S.U., Al-Shahry M., Ingler W.B. 2002. Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297(5590), 2243-2245.
Li H., Zhang J., Wang T., Luo W., Zhou Q., Jiang G. 2008. Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite. Aquatic Toxicology 89(4), 251-256.
Li X., Xu H., Chen Z.S., Chen G. 2011. Biosynthesis of nanoparticles by microorganisms and their applications. Journal of Nanomaterials 1-16.
Mahshid S., Askari M., Ghamsari M.S. 2007. Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. Journal of Materials Processing Technology 189(3), 296-300.
Natarajan V., Wilson C.L., Hayward S.L., Kidambi S. 2015. Titanium dioxide nanoparticles trigger loss of function and perturbation of mitochondrial dynamics in primary hepatocytes. PloS one 10(8), 34-45.
Roopan S.M., Kumar S.H.S., Madhumitha G., Suthindhiran K. 2015. Biogenic-production of SnO 2 nanoparticles and its cytotoxic effect against hepatocellular carcinoma cell line (HepG2). Applied Biochemistry and Biotechnology 175(3), 1567-1575.
Scown T.M., van Aerle R., Johnston B.D., Cumberland S., Lead J.R., Owen R., Tyler C.R. 2009. High doses of intravenously administered titanium dioxide nanoparticles accumulate in the kidneys of rainbow trout but with no observable impairment of renal function. Toxicological Sciences 109(2), 372-380.
Shalaby E.A. 2022. Algae-mediated silver nanoparticles: Synthesis, properties, and biological activities. In Green Synthesis of Silver Nanomaterials (pp. 525-545). Elsevier.
Sharifpour E., Soltani M., Javadi M. 2003. Determination LC50 and damages caused by pesticide Endosulfan in Beluga juvenile. Iranian Journal of Fisheries Science 12, 69-84.
Suganthi P., Murali M., Athif P., Bukhari A.S., Mohamed H.S., Basu H., Singhal R.K. 2019. Haemato-immunological studies in ZnO and TiO2 nanoparticles exposed euryhaline fish, Oreochromis mossambicus. Environmental Toxicology and Pharmacology 66, 55-61.
Tabassum S., Ahmed M.S., Ahmed K.S., Thiemann T., Habib R.Z., Shamas S. 2020. Labeo rohita fingerlings exposed to titanium dioxide (TiO2 NPs): A concentration-dependent bi-modal effect on growth. The Egyptian Journal of Aquatic Research 46(4), 341-346.
Vidya P.V., Chitra K.C. 2017. Assessment of acute toxicity (LC50-96 h) of aluminium oxide, silicon dioxide and titanium dioxide nanoparticles on the freshwater fish, Oreochromis mossambicus (Peters, 1852). International Journal of Fisheries and Aquatic Studies 5(1), 327-332.
Xu H., Wang X., Zhang, L. 2008. Selective preparation of nanorods and micro-octahedrons of Fe2O3 and their catalytic performances for thermal decomposition of ammonium perchlorate. Powder Technology 185(2), 176-180.